曹井泉, 朝伦巴根, 刘耀炜, 2010.承压井水位固体潮M2波海潮负荷改正.地震研究, 33(1):75-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj201001013
|
车用太, 刘五洲, 鱼金子等, 2000.板内强震的中地壳硬夹层孕震与流体促震假设.地震学报, 22(1):93-101. doi: 10.3321/j.issn:0253-3782.2000.01.013
|
车用太, 鱼金子, 2006.地震地下流体学.北京:气象出版社, 420-424.
|
耿杰, 陈安方, 潘双进, 2008.山东地下水动态观测井对2007年印尼8.5级地震的响应特征.西北地震学报, 30(2):173-178. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb200802016
|
蒋骏, 2000.地震前兆信息处理与软件系统.北京:地震出版社.
|
李艳芸, 李绍武, 2006.风暴潮预报模式在渤海海域中的应用研究.海洋技术, 25(1):101-106. doi: 10.3969/j.issn.1003-2029.2006.01.023
|
刘序俨, 郑小菁, 王林等, 2009.承压井水位观测系统对体应变的响应机制分析.地球物理学报, 52(12):3147-3157. doi: 10.3969/j.issn.0001-5733.2009.12.025
|
刘序俨, 郑小菁, 陈莹等, 2013.承压井与非承压井水位潮汐效应及其定量分析.大地测量与地球动力学, 33(1):35-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201301008
|
秦双龙, 廖丽霞, 陈莹等, 2014.利用福建井水位同震变化反演井-含水层体应变及其意义探讨.内陆地震, 28(4):353-359. doi: 10.3969/j.issn.1001-8956.2014.04.010
|
史浙明, 王广才, 刘春国, 2012.基于汶川地震同震地下水位变化反演含水层体应变.地震学报, 34(2):215-223. doi: 10.3969/j.issn.0253-3782.2012.02.008
|
苏淑娟, 孙豪, 邹春红等, 2017.鲁07井水位与水温同震响应特征浅析.齐鲁地震科学专辑(2016合辑), 3:97-105.
|
王学聚, 殷海涛, 王鹏, 2013.山东地下流体数字化井网对汶川8.0级地震的响应分析.地震地磁观测与研究, 34(1-2):225-231. http://d.old.wanfangdata.com.cn/Periodical/dzdcgcyyj201301042
|
王学聚, 殷海涛, 王庆林, 2017.山东地下流体数字化井网对特大地震的响应分析.国际地震动态, (10):32-39. doi: 10.3969/j.issn.0253-4975.2017.10.006
|
杨柳, 马建英, 曹井泉等, 2014.利用华北地区承压井水位资料反演含水层体应变.中国地震, 30(2): 249-259. doi: 10.3969/j.issn.1001-4683.2014.02.013
|
尹京苑, 赵利飞, 2000.保山井水位异常的数值模拟.西北地震学报, 22(4):397-401. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb200004008
|
张昭栋, 刘庆国, 耿杰, 1999.由承压井水位动态反演水井含水层的应力变化.华南地震, 19(1):37-42. doi: 10.3969/j.issn.1001-8662.1999.01.006
|
赵永红, 谢雨晴, 王航等, 2017.地震预测方法:地下流体方法.地球物理学进展, 32(4):1539-1547. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201712018
|
Biot M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2): 155-164. doi: 10.1063/1.1712886
|
Biot M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2):182-185. doi: 10.1063/1.1721956
|
Biot M. A., 1956. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 78:91-96. http://cn.bing.com/academic/profile?id=66d16522587992e8b98d8eed4087a75f&encoded=0&v=paper_preview&mkt=zh-cn
|
Bredehoeft J. D., 1967. Response of well-aquifer systems to earth tides. Journal of Geophysical Research, 72(12):3075-3087. doi: 10.1029/JZ072i012p03075
|
Narasimhan T. N., Kanehiro B. Y., Witherspoon P. A., 1984. Interpretation of earth tide response of three deep, confined aquifers. Journal of Geophysical Research:Solid Earth, 89(B3):1913-1924. doi: 10.1029/JB089iB03p01913
|
Rhoads Jr. G. H., Robinson E. S., 1979. Determination of aquifer parameters from well tides. Journal of Geophysical Research:Solid Earth, 84(B11):6071-6082. doi: 10.1029/JB084iB11p06071
|
Rice J. R., Cleary M. P., 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics, 14(2):227-241. http://cn.bing.com/academic/profile?id=1dba3bd1031c5d4f97a98d69024181a9&encoded=0&v=paper_preview&mkt=zh-cn
|
Roeloffs E., 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Advances in Geophysics, 37:135-195. doi: 10.1016/S0065-2687(08)60270-8
|
Terzaghi K., 1923. Die berechnung der durchlassigheitsziffer des tones aus dem verlauf der hydrodynamischen spanningserscheinungen. Sber Akad Wiss Wien, 132:105-124.
|
Toll N. J., Rasmussen T. C., 2007. Removal of barometric pressure effects and Earth tides from observed water levels. Groundwater, 45(1):101-105. doi: 10.1111/gwat.2007.45.issue-1
|
Wangle H. F., 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton:Princeton University Press, 4-10.
|