• ISSN 1673-5722
  • CN 11-5429/P

基于Matlab的井水位反演含水层体应变可视化系统的研制

苏淑娟 邹春红 王合乾 孙豪 邹钟毅 吴月波

苏淑娟, 邹春红, 王合乾, 孙豪, 邹钟毅, 吴月波. 基于Matlab的井水位反演含水层体应变可视化系统的研制[J]. 震灾防御技术, 2019, 14(2): 411-422. doi: 10.11899/zzfy20190214
引用本文: 苏淑娟, 邹春红, 王合乾, 孙豪, 邹钟毅, 吴月波. 基于Matlab的井水位反演含水层体应变可视化系统的研制[J]. 震灾防御技术, 2019, 14(2): 411-422. doi: 10.11899/zzfy20190214
Su Shujuan, Zou Chunhong, Wang Heqian, Sun Hao, Zou Zhongyi, Wu Yuebo. The Development of Visualization System for Inversion of Aquifer Volumetric Strain by the Data of the Well Water Level Through Matlab[J]. Technology for Earthquake Disaster Prevention, 2019, 14(2): 411-422. doi: 10.11899/zzfy20190214
Citation: Su Shujuan, Zou Chunhong, Wang Heqian, Sun Hao, Zou Zhongyi, Wu Yuebo. The Development of Visualization System for Inversion of Aquifer Volumetric Strain by the Data of the Well Water Level Through Matlab[J]. Technology for Earthquake Disaster Prevention, 2019, 14(2): 411-422. doi: 10.11899/zzfy20190214

基于Matlab的井水位反演含水层体应变可视化系统的研制

doi: 10.11899/zzfy20190214
基金项目: 

山东省地震局重点研发项目 YF1703

详细信息
    作者简介:

    苏淑娟, 女, 生于1979年。工程师。研究方向:地震地下流体。E-mail:shujuan_su@163.com

The Development of Visualization System for Inversion of Aquifer Volumetric Strain by the Data of the Well Water Level Through Matlab

  • 摘要: 基于反演含水层体应变的数学模型,在Matlab GUI界面下研发1款高效、便捷的体应变反演软件,实现了规定时间阈内连续体应变值和实时体应变曲线的一键获得功能。软件的用户界面操作简便,经实例验证,其运算速度和结果均可满足计算和分析需求。
  • 图  1  汶川MS 8.0地震时商河鲁09井“反演体应变值”界面(分钟值)

    Figure  1.  Interface of "inversion of volumetric strain values" for Lu 09 Well of Shanghe during Wenchuan MS 8.0 earthquake (minute values)

    图  2  汶川MS 8.0地震时栖霞鲁07井“反演体应变值”界面(小时值)

    Figure  2.  Interface of "inversion of volumetric strain values" for Lu 07 Well of Qixia during Wenchuan MS 8.0 earthquake (hour values)

    图  3  Figure图片的显示及编辑界面

    Figure  3.  Display and editing interface of the Figure

    图  4  “GroundWater.exe”程序运行界面

    Figure  4.  Operation interface of "GroundWater.exe program"

    图  5  尼泊尔MS 8.1地震商河鲁09井水位反演的体应变曲线

    Figure  5.  Inversion graph of volumetric strain by water level of Lu 09 well of Shanghe during Nepal MS 8.1 earthquake

    图  6  尼泊尔MS 8.1地震栖霞鲁07井水位反演的体应变曲线

    Figure  6.  Inversion graph of volumetric strain by water level of Lu 07 well of Qixia during Nepal MS 8.1 earthquake

    图  7  尼泊尔MS 8.1地震烟台地震监测中心台的体应变实际观测曲线

    Figure  7.  Observation graph of volumetric strain by Yantai Earthquake Monitoring Center during Nepal MS 8.1 earthquake

  • 曹井泉, 朝伦巴根, 刘耀炜, 2010.承压井水位固体潮M2波海潮负荷改正.地震研究, 33(1):75-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj201001013
    车用太, 刘五洲, 鱼金子等, 2000.板内强震的中地壳硬夹层孕震与流体促震假设.地震学报, 22(1):93-101. doi: 10.3321/j.issn:0253-3782.2000.01.013
    车用太, 鱼金子, 2006.地震地下流体学.北京:气象出版社, 420-424.
    耿杰, 陈安方, 潘双进, 2008.山东地下水动态观测井对2007年印尼8.5级地震的响应特征.西北地震学报, 30(2):173-178. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb200802016
    蒋骏, 2000.地震前兆信息处理与软件系统.北京:地震出版社.
    李艳芸, 李绍武, 2006.风暴潮预报模式在渤海海域中的应用研究.海洋技术, 25(1):101-106. doi: 10.3969/j.issn.1003-2029.2006.01.023
    刘序俨, 郑小菁, 王林等, 2009.承压井水位观测系统对体应变的响应机制分析.地球物理学报, 52(12):3147-3157. doi: 10.3969/j.issn.0001-5733.2009.12.025
    刘序俨, 郑小菁, 陈莹等, 2013.承压井与非承压井水位潮汐效应及其定量分析.大地测量与地球动力学, 33(1):35-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201301008
    秦双龙, 廖丽霞, 陈莹等, 2014.利用福建井水位同震变化反演井-含水层体应变及其意义探讨.内陆地震, 28(4):353-359. doi: 10.3969/j.issn.1001-8956.2014.04.010
    史浙明, 王广才, 刘春国, 2012.基于汶川地震同震地下水位变化反演含水层体应变.地震学报, 34(2):215-223. doi: 10.3969/j.issn.0253-3782.2012.02.008
    苏淑娟, 孙豪, 邹春红等, 2017.鲁07井水位与水温同震响应特征浅析.齐鲁地震科学专辑(2016合辑), 3:97-105.
    王学聚, 殷海涛, 王鹏, 2013.山东地下流体数字化井网对汶川8.0级地震的响应分析.地震地磁观测与研究, 34(1-2):225-231. http://d.old.wanfangdata.com.cn/Periodical/dzdcgcyyj201301042
    王学聚, 殷海涛, 王庆林, 2017.山东地下流体数字化井网对特大地震的响应分析.国际地震动态, (10):32-39. doi: 10.3969/j.issn.0253-4975.2017.10.006
    杨柳, 马建英, 曹井泉等, 2014.利用华北地区承压井水位资料反演含水层体应变.中国地震, 30(2): 249-259. doi: 10.3969/j.issn.1001-4683.2014.02.013
    尹京苑, 赵利飞, 2000.保山井水位异常的数值模拟.西北地震学报, 22(4):397-401. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb200004008
    张昭栋, 刘庆国, 耿杰, 1999.由承压井水位动态反演水井含水层的应力变化.华南地震, 19(1):37-42. doi: 10.3969/j.issn.1001-8662.1999.01.006
    赵永红, 谢雨晴, 王航等, 2017.地震预测方法:地下流体方法.地球物理学进展, 32(4):1539-1547. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201712018
    Biot M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2): 155-164. doi: 10.1063/1.1712886
    Biot M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2):182-185. doi: 10.1063/1.1721956
    Biot M. A., 1956. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 78:91-96. http://cn.bing.com/academic/profile?id=66d16522587992e8b98d8eed4087a75f&encoded=0&v=paper_preview&mkt=zh-cn
    Bodvarsson G., 1970. Confined fluids as strain meters. Journal of Geophysical Research, 75(14):2711-2718. doi: 10.1029/JB075i014p02711
    Bredehoeft J. D., 1967. Response of well-aquifer systems to earth tides. Journal of Geophysical Research, 72(12):3075-3087. doi: 10.1029/JZ072i012p03075
    Narasimhan T. N., Kanehiro B. Y., Witherspoon P. A., 1984. Interpretation of earth tide response of three deep, confined aquifers. Journal of Geophysical Research:Solid Earth, 89(B3):1913-1924. doi: 10.1029/JB089iB03p01913
    Rhoads Jr. G. H., Robinson E. S., 1979. Determination of aquifer parameters from well tides. Journal of Geophysical Research:Solid Earth, 84(B11):6071-6082. doi: 10.1029/JB084iB11p06071
    Rice J. R., Cleary M. P., 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics, 14(2):227-241. http://cn.bing.com/academic/profile?id=1dba3bd1031c5d4f97a98d69024181a9&encoded=0&v=paper_preview&mkt=zh-cn
    Roeloffs E., 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Advances in Geophysics, 37:135-195. doi: 10.1016/S0065-2687(08)60270-8
    Terzaghi K., 1923. Die berechnung der durchlassigheitsziffer des tones aus dem verlauf der hydrodynamischen spanningserscheinungen. Sber Akad Wiss Wien, 132:105-124.
    Toll N. J., Rasmussen T. C., 2007. Removal of barometric pressure effects and Earth tides from observed water levels. Groundwater, 45(1):101-105. doi: 10.1111/gwat.2007.45.issue-1
    Wangle H. F., 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton:Princeton University Press, 4-10.
  • 加载中
图(7)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回