• ISSN 1673-5722
  • CN 11-5429/P

嫩江断裂带北段的第四纪活动特征初步研究

殷娜 余中元 周兆军 王鹤 李莹甄 赵斌

闫石,周游,郝冰,李远东,魏来,周正华,2023. 高速列车运行引起的地基振动测试与分析. 震灾防御技术,18(1):127−135. doi:10.11899/zzfy20230114. doi: 10.11899/zzfy20230114
引用本文: 殷娜, 余中元, 周兆军, 王鹤, 李莹甄, 赵斌. 嫩江断裂带北段的第四纪活动特征初步研究[J]. 震灾防御技术, 2019, 14(1): 164-173. doi: 10.11899/zzfy20190116
Yan Shi, Zhou You, Hao Bing, Li Yuandong, Wei Lai, Zhou Zhenghua. Test and Analysis of Foundation Vibration Caused by the High-speed Train[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 127-135. doi: 10.11899/zzfy20230114
Citation: Yin Na, Yu Zhongyuan, Zhou Zhaojun, Wang He, Li Yingzhen, Zhao Bin. Reliminary Research on Quaternary Activity Features of the Northern Section of the Nenjiang Fault Zone[J]. Technology for Earthquake Disaster Prevention, 2019, 14(1): 164-173. doi: 10.11899/zzfy20190116

嫩江断裂带北段的第四纪活动特征初步研究

doi: 10.11899/zzfy20190116
基金项目: 

河北省教育教学研究与改革实践项目 2016GJJG246

防灾科技学院教育研究与教学改革项目 JY2016B03

中央高校基本科研业务费专项 ZY20180204

详细信息
    作者简介:

    殷娜, 女, 生于1985年。讲师。主要从事灾害学方面的教学及活动构造与地震活动性方面的研究。E-mail:yinnaeq@qq.com

    通讯作者:

    余中元, 男, 生于1982年。副教授。主要从事地震地质与地震工程方面的研究。E-mail:yuyangzi9811@126.com

Reliminary Research on Quaternary Activity Features of the Northern Section of the Nenjiang Fault Zone

  • 摘要: 嫩江断裂带是松辽盆地的西边界断裂,但受第四系强覆盖等研究条件的限制,前人对该断裂第四纪构造活动的研究较少。本文针对该断裂带北段开展了野外地质调查,并综合大地电磁测深和纵波速度结构等结果,初步研究了嫩江断裂带北段的第四纪活动特征。调查发现,该断裂北段主要发育地貌陡坎、基岩滑坡、地层揉皱变形、近垂直擦痕、基岩崩塌与线性断塞塘等特征。探槽古地震研究揭示断裂带北段在(80.9±4.6)—(62.9±2.3)ka BP曾发生1次古地震事件,运动方式为正断,垂直位移量约1.5m,震级约为MS 7.1—7.3,断裂在晚更新世曾发生过强烈活动。研究结果有助于认识了解该断裂和松辽盆地的第四纪构造变形过程,并为评价该断裂及邻区的地震活动潜势提供参考。
  • 高速铁路的快速发展给人们出行带来便捷的同时,也会产生振动和噪声,影响着人们的生活环境(王逢朝等,1999夏禾等,2004刘厚毅等,2018郁雯等,2021)。不同于传统列车,高速列车运行引起的振动对铁路沿线建筑物等具有更显著的影响(尹皓等,2010王金凤等,2012)。因此,高速列车运行引起的环境振动问题受到了广泛关注。

    现场测试是研究高速列车运行引起的环境振动特征的主要有效方法之一。Connolly等(2014)分别对比利时高速铁路网中平地、路堤、路堑和高架4种路基形式下列车经过产生的环境振动进行实测,并对不同条件下的测试结果进行对比分析,通过研究车速与地面振动的关系,提出了二者之间呈弱正相关的关系,研究结果表明,当高速列车经过时,接近轨道处振动的垂直分量占主导,而远离轨道处振动的水平分量与垂直分量相当,甚至占主导,其中路堑段的环境振动水平最高,且频带范围最宽。Zhai等(2015)于2014年对我国京沪高速铁路运行速度300~410 km/h的CRH380AL和CRH380BL动车组车型经过路堤段引起的环境振动进行了现场测试,并对实测数据进行频谱分析,得到距轨道中心线不同距离的各测点频谱特征,拟合了不同行车速度下振动衰减规律曲线,研究结果表明,运行速度超过300 km/h高速列车引起的环境振动主频主要集中在20~60 Hz,且与列车几何特征密切相关。Degrande等(2001)依托布鲁塞尔至巴黎的高速铁路沿线工程,对运行速度223~314 km/h高速列车引起的环境振动进行测试,并利用实测数据验证了数值预测模型,研究结果表明,随着列车车速的增加,地面振动高频部分逐渐增加。Ju等(2009)对我国台湾中部运行速度270 km/h的HSR-700T型高速列车在路堤和隧道中运行时进行了自由场地试验,试验结果与现场测试研究得到的衰减特征相似。Galvín等(2009)测试了西班牙有砟轨道运行速度151~298 km/h高速列车引起的环境振动,测试结果与数值模拟结果具有较好的一致性。葛勇等(2010)为研究列车运行引起的振动加速度衰减特征,对渝遂线CRH2型和谐号动车组列车运行的场地振动进行了实测,提出了一阶指数衰减公式和二次多项式衰减公式,并与测试结果进行对比,对测试结果进行了频谱分析,研究结果表明,一阶指数衰减公式误差较小,Hilbert边际谱可更好地反映场地振动特性。Connolly等(2015)于2014年对欧洲7个国家17个高速铁路观测点进行了大量环境振动观测,对观测得到的约1 500组振动实测数据进行分析,通过数据拟合,针对3个国际度量标准参数(VdB、KBFmax和PPV)分别提出地面振动预测公式,并与先前提出的预测公式进行比较修正,研究结果表明,土层性质对地面振动强度的影响较大,振动评价应充分考虑其带来的影响。Kouroussis等(2016)于2015年分别对比利时高速铁路路堑段、路堤段和平地段进行现场测试,探究不同地基条件对高速铁路振动产生和传播的影响,在标定现场土层参数的基础上,分别建立三维有限元模型以重现3个测试场地,模拟结果表明,路堤段和平地段模拟结果与实测结果吻合较好,下伏土层刚度对振动产生和传播的影响最大,因此进行振动评价时需考虑路基形式和地下土层刚度情况。贺玉龙等(2012)为研究高架段环境振动的衰减特性,对京津城际高速列车运行在天津市武清区杨村特大桥247号桥墩时的环境振动进行测试,测试结果表明,软土地区高速铁路通过高架段引起的环境振动符合对数衰减规律,且在距轨道中心线30 m范围内衰减较快,随后衰减趋于平缓,然而测试结果与我国现有环境振动预测公式有明显差异,说明我国现有环境振动预测公式仍有缺陷,需在大量测试数据的基础上对现有预测公式进行适当修正。王玉石等(2014)通过对哈大铁路客运专线4个地震监测点附近的测试发现,列车运行引起的地震动幅值较大,但随距离的增加衰减较快。刘厚毅等(2018)通过现场实测分析了高速列车引起的地基土不同深度处振动响应及其随深度的衰减规律。

    目前国内外已有研究通过现场测试分析了高速列车引起的地表振动随距轨道中心线距离的变化特征及环境振动主要影响频带,但高速列车引起的振动响应与场地条件、路基形式等密切相关,深入开展不同场地条件和不同路基形式下高速铁路地表处振动响应现场测试研究,分析地表振动响应随距轨道中心线距离的变化特征,对路线两侧环境管理、工程设计和防震措施等具有一定意义。本文针对不同场地条件下高墩高架式、低墩高架式、路堤式及路堑式高速铁路地基土距轨道中心线不同距离地表处三分量振动响应开展现场测试研究,分析了不同工程场地高速列车引起的振动响应随水平距离的变化特征,该变化特征总体表现为:不同场地条件与路基形式下,随着距轨道中心线距离的增加,振动峰值加速度总体呈衰减趋势,且距轨道近距离处振动峰值加速度衰减较快,远距离处振动峰值加速度衰减较慢,这与已有研究结论一致。然而,不同场地条件与路基形式下,地表处三分量振动峰值加速度随距轨道中心线距离的增加衰减速度不同,在距轨道中心线一定距离处振动峰值加速度随距离的增加而增大,表明路基形式与场地条件对高速铁路车辆运行引起的地基振动具有显著影响。

    高速列车运行引起的环境振动现场测试沿京沪高速铁路线开展,在昆山市、无锡市、南京市、宿州市、徐州市、济宁市、枣庄市、德州市各选取1个适宜的试验场地,对Ⅰ、Ⅱ、Ⅲ、Ⅳ类建筑场地GB 50011—2010《建筑抗震设计规范》(中华人民共和国住房和城乡建设部等,2010))条件下的高架式、路堤式和路堑式高速铁路地基土振动响应进行现场测试,主要内容如表1所示。

    表 1  高速铁路环境振动影响现场测试工况
    Table 1.  High-speed rail environmental vibration impact field test conditions information
    路基形式场地类型测试地点测试内容
    高墩高架式(桥墩高度≥10 m)Ⅱ类南京市浦口区(桥墩高约12 m)地表不同距离处振动加速度
    Ⅲ类无锡市锡山区(桥墩高约10.5 m)
    Ⅳ类苏州市昆山市(桥墩高约10.5 m)
    低墩高架式(桥墩高度≤7 m)Ⅱ类宿州市埇桥区(桥墩高约6.5 m)
    Ⅲ类德州市齐河县(桥墩高约5 m)
    路堤式Ⅱ类枣庄市峄城区
    Ⅰ类徐州市贾汪区
    路堑式Ⅱ类济宁市邹城市
    下载: 导出CSV 
    | 显示表格

    现场测试仪器为ETNA2型数字强震动加速度仪,该仪器具有宽频带、动态范围大、噪声水平低、分辨率高等特点。现场测试前对投入现场测试的仪器进行了一致性试验,结果表明测试仪器具有较好的稳定性和一致性。

    对不同场地条件和不同路基形式下高速铁路沿线地面振动进行现场测试,测得距轨道中心线不同距离处高速列车引起的地表三分量振动加速度,以分析高速列车引起的地面振动随距离的变化特征。测试地表距轨道中心线不同距离处的振动加速度响应时,设置7个测点,测试仪器为7台ETNA2型数字强震动加速度仪,将仪器分别置于距轨道中心线(高架桥路基形式)或铁路外侧防护栏(路堤形式和路堑形式)0、5、10、20、30、50、70 m位置处,如图1图3所示。测试路基形式包括高架式(高墩、低墩)、路堤式和路堑式路基。在高架式路基测试场地,第1台仪器放置于轨道中心线正下方靠近桥墩处;在路堤和路堑式路基测试场地,第1台仪器放置于紧靠轨道外侧护栏处。按照统一规定方向(垂直轨道方向为水平x向,平行轨道方向为水平y向,竖向为z向)将测试仪器置于不同距离处并调平、固定。

    图 1  高架式路基试验场地仪器布置示意图
    Figure 1.  Elevated subgrade test site instrument layout diagram
    图 2  路堤式路基试验场地仪器布置示意图
    Figure 2.  Embankment subgrade test site instrument layout diagram
    图 3  路堑式路基试验场地仪器布置示意图
    Figure 3.  Cutting type subgrade test site instrument layout diagram

    现场测试用高速动车组均为设计运行速度300 km/h以上的高速列车。测试距轨道中心线不同距离地表处高速列车引起的振动响应时,每个测试场地一般测试3~4次,每次测试记录时间为2 h,采样率为200 Hz,记录方式为定时触发记录,以确保每台测试仪器同步记录。为便于分析,现场测试中记录了触发时间及每组高速列车通过测试场地的时刻,并利用激光测速仪测试各组列车通过测试现场的速度,同时观察了列车类型,便于后期数据处理。

    鉴于测试得到的各原始加速度记录存在一定的零位漂移,为此对原始振动加速度记录at)进行了零阶基线校正,具体处理步骤如下:

    (1)依据无列车通过时间段内的加速度记录,计算得到加速度平均值a0

    (2)从有列车经过时记录的加速度记录at)中减去加速度平均值a0,得到无零位漂移的加速度记录时程。

    依据经基线校正的列车通过时各振动加速度记录,可确定列车通过时距轨道中心线不同距离地表处测点垂直轨道水平向、平行轨道水平向与竖向峰值加速度。在此基础上,依据不同场地条件、不同路基形式、不同测点的不同方向加速度峰值进行算术平均,得到相应的平均加速度峰值进行分析。

    在现场测试结果的基础上筛选运行速度约为300 km/h、车型为CRH380AL、以16节车厢编组运行的列车经过南京市浦口区测试场地时记录的振动加速度数据,如图4图5所示。

    图 4  南京市浦口区测试场地距轨道中心线不同距离地表三分量振动加速度时程曲线
    Figure 4.  Three component vibration acceleration time history of the surface at different distances from the center line of the orbit in Pukou District, Nanjing
    图 5  南京市浦口区测试场地距轨道中心线不同距离地表三分量振动加速度频谱曲线
    Figure 5.  Three component vibration acceleration spectrum of the surface at different distances from the center line of the orbit in Pukou District, Nanjing

    图4可知,地表竖向与水平向振动加速度基本随距轨道中心线距离的增加而衰减,近轨道处衰减较快。由图5可知,近轨道处的频带明显较宽,随着距轨道中心线距离的增加,频带逐渐变窄且优势频率变低,高频振动逐渐减小。

    对现场测试数据进行处理,得到Ⅱ、Ⅲ、Ⅳ类场地高墩高架式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线如图6所示,Ⅱ、Ⅲ类场地低墩高架式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线如图7所示,Ⅰ、Ⅱ类场地路堤式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线如图8所示,Ⅱ类场地路堑式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线如图9所示。

    图 6  高墩高架式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线
    Figure 6.  Variation curves of peak acceleration of ground vibration caused by high-speed train under high pier elevated subgrade with distance from track centerline
    图 7  低墩高架式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线
    Figure 7.  Variation curves of peak acceleration of ground vibration caused by high-speed train under low pier elevated subgrade with distance from track centerline
    图 8  路堤式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线
    Figure 8.  Variation curves of peak acceleration of ground vibration caused by high-speed train under embankment with distance from the center line of track
    图 9  路堑式路基条件下高速列车引起的地表振动峰值加速度随距轨道中心线距离的变化曲线
    Figure 9.  Variation curves of peak acceleration of ground vibration caused by high-speed train under cutting subgrade with distance from the center line of track

    图6可知,对于高速列车引起的高墩高架式路基地表振动响应,Ⅱ类场地条件下,三分量振动峰值加速度在距轨道中心线0~20 m范围内衰减速度较快,随后衰减速度迅速变缓;而Ⅲ、Ⅳ类场地条件下,三分量振动峰值加速度在距轨道中心线5 m处均较0 m处放大,在距轨道中心线5~10 m范围内三分量振动峰值加速度迅速衰减,随后衰减速度变缓。Ⅲ类场地条件下,三分量振动峰值加速度衰减最快,其次为Ⅱ类场地,最后为Ⅳ类场地。

    图7可知,对于高速列车引起的低墩高架式路基地表振动响应,Ⅱ类场地条件下,三分量振动峰值加速度在距轨道中心线0~20 m范围内衰减速度较快,随后衰减速度迅速变缓,且垂直轨道水平向振动峰值加速度在距轨道中心线10 m和30 m处略有放大,平行轨道水平向振动峰值加速度在距轨道中心线30 m处也略有放大;而Ⅲ类场地条件下,三分量振动峰值加速度在距轨道中心线0~5 m范围内迅速衰减,距离超过5 m后三分量振动峰值加速度衰减趋势明显变缓,其中垂直轨道水平向振动峰值加速度在距轨道中心线10 m处略有放大。Ⅲ类场地较Ⅱ类场地而言,三分量振动峰值加速度在更短距离内衰减至较小值,随后开始缓慢衰减。

    图8(a)可知,对于Ⅰ类场地条件下的路堑式路基,高速列车引起的水平向振动峰值加速度均随距轨道中心线距离的增大呈先增大后减小的趋势,竖向振动峰值加速度在距轨道中心线12~22 m范围内减小,随后在距轨道中心线22~62 m范围内放大,当距离超过62 m时,峰值加速度开始减小;高速列车引起的垂直轨道水平向振动峰值加速度在距轨道中心线42 m处达最大值,平行轨道水平向和竖向振动峰值加速度在距轨道中心线62 m处达最大值;垂直轨道水平向振动峰值加速度在距轨道中心线42 m处较12 m处增大约446%,平行轨道水平向振动峰值加速度在距轨道中心线62 m处较12 m处增大约105%,竖向振动峰值加速度在距轨道中心线62 m处较12 m处增大约37%,可知垂直轨道水平向振动峰值加速度放大速度大于平行轨道水平向和竖向;随着距轨道中心线距离进一步增加,三分量振动峰值加速度衰减速度基本相同。

    图8(b)可知,对于Ⅱ类场地条件下的路堑式路基,高速列车引起的垂直轨道水平向、平行轨道水平向和竖向振动峰值加速度均随距轨道中心线距离的增加呈衰减趋势。当距轨道中心线16~46 m时,垂直轨道水平向振动峰值加速度随距轨道中心线距离的增加先增大后减小,在距轨道中心线21、26 m处均较16 m处大,当距轨道中心线距离超过26 m后,峰值加速度迅速衰减,在距轨道中心线46 m处较16 m处衰减约84%;平行轨道水平向振动峰值加速度随距轨道中心线距离的增加呈先增大后减小的趋势,在距轨道中心线21、26、36 m处均较16 m处大,当距轨道中心线距离超过36 m后,峰值加速度迅速衰减,在距轨道中心线46 m处较16 m处衰减约64%;竖向振动峰值加速度随距轨道中心线距离的增加逐渐衰减,距轨道中心线16~26 m时的衰减速度大于距轨道中心线26~46 m时,在距轨道中心线46 m处较16 m处衰减约88%;在距轨道中心线46~86 m范围内,三分量振动峰值加速度随距轨道中心线距离的增加衰减速度变缓,且衰减速度基本相同。

    图9可知,对于路堑式路基,高速列车引起的垂直轨道水平向、平行轨道水平向和竖向振动峰值加速度均随距轨道中心线距离的增加呈先衰减后增大再衰减的趋势,在距轨道中心线30 m和40 m处有所放大;当距轨道中心线10~20 m时,三分量振动峰值加速度均快速衰减,其中垂直轨道水平向振动峰值加速度减小约72%,平行轨道水平向振动峰值加速度减小约56%,竖向振动峰值加速度减小约75%;当距轨道中心线20~40 m时,三分量振动峰值加速度均出现放大,其中垂直轨道水平向振动峰值加速度增大约61%,平行轨道水平向振动峰值加速度增大约63%,竖向振动峰值加速度增大约28%,水平向振动峰值加速度增大速度大于竖向振动峰值加速度;当距轨道中心线距离超过40 m时,三分量振动峰值加速度均逐渐衰减,且水平向振动峰值加速度衰减速度大于竖向振动峰值加速度。

    本文选择8个不同场地类型及路基形式的工程场地进行高速列车运行引起的地表振动加速度测试,分析地表处振动峰值加速度随距轨道中心线距离的变化特征,主要得出以下结论:

    (1)高墩高架式路基轨道中心线正下方三分量振动峰值加速度总体略小于低墩高架式路基,说明振动传播过程中,高桥墩对振动能量有一定削减作用。定性分析认为,这是由于高速列车运行引起的振动高频成分丰富,而低墩较高墩固有振动频率高,低墩对高频振动的衰减作用相对较小。

    (2)不同场地条件下,地表处三分量振动峰值加速度随距轨道中心线距离的增加衰减速度不同,总体表现为Ⅲ类场地条件下三分量振动峰值加速度衰减最快,Ⅱ类场地次之,Ⅳ类场地衰减最慢。定性分析认为,这是由于不同场地条件下振动频率特性存在差异。

    (3)Ⅱ、Ⅲ、Ⅳ类场地条件下,随着距轨道中心线距离的增加,三分量振动峰值加速度均呈衰减趋势,且距轨道近距离处峰值加速度衰减较快,远距离处峰值加速度衰减较慢;Ⅰ类场地条件下,高速列车引起的地表处振动响应随距轨道中心线距离的增加呈先增大后减小的趋势,垂直轨道水平向振动峰值加速度在距轨道中心线42 m处达最大值,平行轨道水平向和竖向振动峰值加速度在距轨道中心线62 m处达最大值。定性分析认为,近路基振动水平衰减较快,这是由高频振动衰减快引起的,随着距轨道中心线距离的增加,其振动主要为低频振动,衰减相对较慢。Ⅰ类场地条件下,不同方向的振动峰值加速度最大值出现的位置不同,分析认为这是由振动频率特性差异引起的。

    (4)随着距轨道中心线距离的增加,不同路基形式的工程场地三分量振动峰值加速度在不同位置处有所增大,高墩高架式路基条件下三分量振动峰值加速度多在距轨道中心线5 m处较0 m大,低墩高架式路基条件下三分量振动峰值加速度多在距轨道中心线10 m处较5 m大。定性分析认为,振动峰值加速度在一定距离处出现增大是由振动波经反射叠加所致,与场地条件密切相关。

    (5)在距轨道中心线一定距离处,振动峰值加速度随着距轨道中心线距离的增加出现变大现象,Ⅰ、Ⅱ、Ⅲ类场地条件下,垂直轨道水平向振动峰值加速度放大效应均大于平行轨道水平向和竖向,而在Ⅳ类场地条件下,竖向振动峰值加速度放大效应大于水平向。定性分析认为,这是由振动频率特性与局部场地条件共同作用引起的。

    (6)高速列车运行引起的地表振动峰值加速度傅里叶谱分析结果表明,近轨道处频带明显较宽,随着距轨道中心线距离的增加,频带逐渐变窄且优势频率变低,高频振动逐渐减小。

  • 图  1  研究区地震构造(据余中元等,2016Yu等,2018a

    Figure  1.  Seismotectonic map of the research area (Modified from Yu et al., 2016; Yu et al., 2018a)

    图  2  研究区C-C’数字地形高程剖面特征(剖面位置见图 1(b)

    Figure  2.  Digital topographic elevation profile along the line C-C'(location of profile C-C' is marked in Fig. 1)

    图  3  跨嫩江断裂地形特征(a)与MT 20km反演地质解释结果(b)(据刘殿秘,2008

    Figure  3.  The topography and MT 20km inversions across the NJFZ (Modified from Liu, 2008)

    图  4  跨嫩江断裂满洲里-绥芬河地学断面纵波速度结构(据杨宝俊等,1996

    Figure  4.  The P-wave velocity structure of Suifenhe-Manzhouli geoscience transect across the NJFZ(Modified from Yang et al., 1996)

    图  5  嫩江断裂镇赉段活动特征

    Figure  5.  The activity features of the Zhenlai section of NJFZ

    图  6  嫩江断裂龙江段活动特征

    Figure  6.  The activity features of Longjiang section of NJFZ

    图  7  点f探槽揭示结果

    Figure  7.  The results revealed by the trench

    图  8  样品年代曲线

    Figure  8.  Curves of the OSL samples

    表  1  嫩江断裂北段光释光年代测试结果

    Table  1.   The OSL dating results of samples from the northern section of the NJFZ

    实验号 α计数率
    /Counts·ks-1
    钾元素含量K/% 实际含水量% 环境剂量率
    /Gy·ka-1
    等效剂量/Gy 年龄/ka BP
    LEDL13-47 10.3±0.3 2.1 22 3.5±0.3 192.7±14.7 55.8±3.1
    LEDL13-55 10.6±0.3 2.0 23 3.4±0.3 202.1±12.2 59.8±2.7
    LEDL13-62 9.3±0.2 2.1 17 3.3±0.3 266.2±22.9 80.9±4.6
    LEDL13-51 9.5±0.3 2.1 24 3.2±0.3 202.3±9.7 62.9±2.3
    下载: 导出CSV

    表  2  嫩江断裂北段古地震事件强度估算

    Table  2.   The estimated magnitude of the paleso-earthquake occurred in northern section of the NJFZ

    最新活动时代 陡坎高度 地表破裂长度 估算烈度 估算震级
    (80.9±4.6)—(62.9±2.3)ka BP 1.5 m 20 km Ⅸ—Ⅹ度 MS 7.1—7.3
    下载: 导出CSV
  • 陈洪洲, 余中元, 许晓艳等, 2004.嫩江断裂构造及其与地震活动的关系.东北地震研究, 20(4):43-49. doi: 10.3969/j.issn.1674-8565.2004.04.007
    邓起东, 于贵华, 叶文华, 1992.地震地表破裂参数与震级关系的研究.见: 国家地震局地质研究所编.活动断裂研究(2).北京: 地震出版社, 247-264.
    邓起东, 冉勇康, 杨晓平等, 2007.中国活动构造图.北京:地震出版社, 2-3.
    刘殿秘, 2008.松辽盆地及其周围典型盆地部分地球物理特征.长春:吉林大学, 12-89.
    闵伟, 焦德成, 周本刚等, 2011.依兰-伊通断裂全新世活动的新发现及其意义.地震地质, 33(1):141-150. doi: 10.3969/j.issn.0253-4967.2011.01.014
    汤兰荣, 吕坚, 曾新福, 2017.赣南及邻区的地震活动特征.华北地震科学, 35(2):82-88. doi: 10.3969/j.issn.1003-1375.2017.02.014
    闻学泽, 1995.活动断裂地震潜势的定量评估.北京:地震出版社, 40-93.
    徐嘉炜, 马国锋, 1992.郯庐断裂带研究的十年回顾.地质论评, 38(4):316-324. doi: 10.3321/j.issn:0371-5736.1992.04.004
    杨宝俊, 穆石敏, 金旭等, 1996.中国满洲里-绥芬河地学断面地球物理综合研究.地球物理学报, 39(6):772-782. doi: 10.3321/j.issn:0001-5733.1996.06.007
    余中元, 闵伟, 韦庆海等, 2015.松辽盆地北部反转构造的几何特征、变形机制及其地震地质意义——以大安-德都断裂为例.地震地质, 37(1):13-32. doi: 10.3969/j.issn.0253-4967.2015.01.002
    余中元, 2016.依兰-伊通断裂带的晚第四纪构造变形与分段活动习性.北京:中国地震局地质研究所, 84-130.
    余中元, 张培震, 闵伟等, 2016.依兰-伊通断裂带尚志段晚全新世以来的强震复发间隔:来自古地震与历史文献的约束.地震地质, 38(4):844-861. doi: 10.3969/j.issn.0253-4967.2016.04.004
    张培震, 邓起东, 张国民等, 2003.中国大陆的强震活动与活动地块.中国科学(D辑), 33(S1):12-20. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2003z1002
    张培震, 张会平, 郑文俊等, 2014.东亚大陆新生代构造演化.地震地质, 36(3):574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003
    Liu M., Yang, Y. Q., Shen Z. K., et al., 2007. Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics. In: Stein S., Mazzotti S., eds., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Boulder: Geological Society of America, 425: 299-318.
    Min W., Liu Y. G., Jiao D. C., et al., 2013. Evidence for Holocene activity of the Yilan-Yitong fault, northeastern section of the Tan-Lu fault zone in northeast China. Journal of Asian Earth Sciences, 67-68:207-216. doi: 10.1016/j.jseaes.2013.02.031
    Yin A., 2010. Cenozoic tectonic evolution of Asia:a preliminary synthesis. Tectonophysics, 488(1-4):293-325. doi: 10.1016/j.tecto.2009.06.002
    Yu Z. Y., Zhang P. Z., Min W., et al., 2015. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China. Journal of Asian Earth Sciences, 107:83-95. doi: 10.1016/j.jseaes.2015.03.047
    Yu Z. Y., Yin N., Shu P., et al., 2018a. Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong Fault Zone in NE China.Journal of Asian Earth Sciences, 151:197-225. doi: 10.1016/j.jseaes.2017.10.038
    Yu Z. Y., Zhang P. Z., Min W., et al., 2018b. Cenozoic pulsed compression of Da'an-Dedu Fault Zone in Songliao Basin (NE China) and its implications for earthquake potential:Evidence from seismic data. Tectonophysics, 722:383-399. doi: 10.1016/j.tecto.2017.11.013
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  29
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 刊出日期:  2019-03-01

目录

/

返回文章
返回