• ISSN 1673-5722
  • CN 11-5429/P

饱和黄土场地原位试验及液化势评价

董林 严武建 夏坤 李少华 刘琨

董林, 严武建, 夏坤, 李少华, 刘琨. 饱和黄土场地原位试验及液化势评价[J]. 震灾防御技术, 2018, 13(4): 950-958. doi: 10.11899/zzfy20180422
引用本文: 董林, 严武建, 夏坤, 李少华, 刘琨. 饱和黄土场地原位试验及液化势评价[J]. 震灾防御技术, 2018, 13(4): 950-958. doi: 10.11899/zzfy20180422
Dong Lin, Yan Wujian, Xia Kun, Li Shaohua, Liu Kun. In-situ Tests and Liquefaction Potential Evaluation for Saturated Loess Sites[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 950-958. doi: 10.11899/zzfy20180422
Citation: Dong Lin, Yan Wujian, Xia Kun, Li Shaohua, Liu Kun. In-situ Tests and Liquefaction Potential Evaluation for Saturated Loess Sites[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 950-958. doi: 10.11899/zzfy20180422

饱和黄土场地原位试验及液化势评价

doi: 10.11899/zzfy20180422
基金项目: 

中国地震局地震预测研究所兰州科技创新基地基本科研业务费专项 2018IESLZ03

国家自然科学基金 51708525

国家自然科学基金 51608496

甘肃省青年科技基金计划 18JR3RA415

详细信息
    作者简介:

    董林, 男, 生于1985年。副研究员。主要从事岩土地震工程研究。E-mail:donglin408@163.com

In-situ Tests and Liquefaction Potential Evaluation for Saturated Loess Sites

  • 摘要: 目前,主要依靠室内动力试验对黄土液化势进行评价。由于黄土特殊的结构性,室内试验对其饱和的过程较为复杂,且与实际场地饱和黄土差异明显,导致室内黄土液化试验结果并不能代表现场饱和黄土的抗液化强度。本文选取兰州市西固区寺儿沟村某饱和黄土场地进行钻孔测试,现场实施了标准贯入试验、静力触探试验以及剪切波速测试。应用Robertson的土类指数分类图对该场地不同含水率黄土的土类进行了界定,确定了饱和黄土属于类砂土,有液化势。应用NCEER推荐方法,计算了3组原位试验数据的饱和黄土循环抗力比(CRR),通过与1976年唐山地震和1999年集集地震液化土CRR对比,得出了饱和黄土抗液化强度很低的结论。
  • 图  1  饱和黄土场地钻孔柱状图

    Figure  1.  Borehole profile of saturated loess site

    图  2  静力触探试验设备

    Figure  2.  Cone penetrometer equipment

    图  3  场地CPT测试结果

    Figure  3.  CPT test results of loess site

    图  4  场地CPT土层分层

    Figure  4.  CPT soil layer profile of loess site

    图  5  原位试验结果对比

    Figure  5.  Comparison of test results of three in-situ

    图  6  Robertson土类指数分类图

    Figure  6.  CPT-based soil behavior-type chart proposed by Robertson

    图  7  黄土土类指数分类图

    Figure  7.  CPT-based loess soil behavior-type chart

    表  1  黄土CPT土类指数

    Table  1.   loess soil behavior-type index

    深度/m qc/MPa fs/kPa Rf/% σv/kPa σv/kPa Q F/% Ic
    9.9 3.95 64.57 1.634 154.43 154.43 30.554 1.701 2.060
    12.29 3.23 49.15 1.523 193.556 193.556 21.799 1.620 2.207
    14.8 3.87 71.20 1.840 234.72 234.72 23.731 1.958 2.151
    17 5.40 71.01 1.315 272.4 272.4 31.074 1.385 2.078
    19 7.55 101.20 1.340 306.8 306.8 41.352 1.397 1.959
    20.95 6.53 98.06 1.501 340.72 340.72 33.553 1.583 2.029
    22.42 6.19 121.71 1.965 366.592 366.592 30.438 2.088 2.039
    23.97 7.63 159.47 2.091 393.872 393.872 36.437 2.205 1.958
    26 6.77 150.12 2.217 430.3 430.3 30.563 2.368 2.026
    27.65 4.66 125.78 2.701 460.95 454.45 19.687 2.997 2.197
    28.95 4.99 136.82 2.742 485.65 466.15 20.861 3.038 2.171
    下载: 导出CSV

    表  2  饱和黄土循环抗力比

    Table  2.   Cyclic resistance ratio of saturated loess

    深度/m qc/MPa fs/kPa Rf/% σv/kPa σv/kPa Ic n CQ qc1N Kc (qc1N)cs CRR
    27.65 4.66 125.78 2.701 460.95 454.45 2.197 0.7 0.469 2.197 1.659 36.250 0.080
    28.95 4.99 136.82 2.742 485.65 466.15 2.171 0.7 0.463 2.171 1.599 36.952 0.081
    下载: 导出CSV
  • 蔡国军, 刘松玉, 童立元等, 2006.孔压静力触探(CPTU)测试成果影响因素及原始数据修正方法探讨.工程地质学报, 14(5):632-636. doi: 10.3969/j.issn.1004-9665.2006.05.011
    廖胜修, 程菊红, 2007.黄土场地震动液化实例.西北地震学报, 29(1):54-57. doi: 10.3969/j.issn.1000-0844.2007.01.011
    刘松玉, 蔡国军, 邹海峰, 2013.基于CPTU的中国实用土分类方法研究.岩土工程学报, 35(10):1765-1776. http://www.cnki.com.cn/Article/CJFDTotal-YTGC201310002.htm
    王家鼎, 白铭学, 肖树芳, 2001.强震作用下低角度黄土斜坡滑移的复合机理研究.岩土工程学报, 23(4):445-449. doi: 10.3321/j.issn:1000-4548.2001.04.013
    王兰民, 石玉成, 刘旭等, 2003.黄土动力学.北京:地震出版社, 85-105.
    王立平, 王勤军, 2008.兰州市西固地区饱和黄土状粉土的液化判别问题探讨.甘肃冶金, 30(2):29-30. doi: 10.3969/j.issn.1672-4461.2008.02.011
    王谦, 王平, 王兰民等, 2013.黄土液化试验中反压饱和技术的改进与应用.世界地震工程, 29(3):145-151. doi: 10.3969/j.issn.1007-6069.2013.03.022
    Andrus R.D., Stokoe II K.H., 2000. Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 126 (11):1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
    Boulanger R. W., Idriss I. M., 2004. Evaluating the potential for liquefaction or cyclic failure of silts and clays. Davis, California:University of California.
    Hwang J. H., Yang C. W., 2001. Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data. Soil Dynamics and Earthquake Engineering, 21 (3):237-257. doi: 10.1016/S0267-7261(01)00002-1
    Ku C. S., Lee D. H., Wu J. H., 2004. Evaluation of soil liquefaction in the Chi-Chi, Taiwan earthquake using CPT. Soil Dynamics and Earthquake Engineering, 24 (9-10):659-673. doi: 10.1016/j.soildyn.2004.06.009
    Ku C. S., Juang C. H., Ou C. Y., 2010. Reliability of CPT Ic as an index for mechanical behaviour classification of soils. Géotechnique, 60 (11):861-875. doi: 10.1680/geot.09.P.097
    Moss R. E. S., Kayen R. E., Tong L. Y., et al., 2011. Retesting of liquefaction and nonliquefaction case histories from the 1976 Tangshan earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 137 (4):334-343. doi: 10.1061/(ASCE)GT.1943-5606.0000406
    Olsen R. S., 1994. Normalization and prediction of geotechnical properties using the cone penetrometer test (CPT). Vicksburg, MS:Final Report Army Engineer Waterways Experiment Station.
    Robertson P. K., (Fear) Wride C. E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35 (3):442-459. doi: 10.1139/t98-017
    Youd T. L., Idriss I. M., 2001. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127 (4):297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-03
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回