• ISSN 1673-5722
  • CN 11-5429/P

楔形空间中圆弧形沉积对平面P波的散射解析解

杨宇 朱秀云 杨智博 李亮

杨宇, 朱秀云, 杨智博, 李亮. 楔形空间中圆弧形沉积对平面P波的散射解析解[J]. 震灾防御技术, 2018, 13(4): 810-821. doi: 10.11899/zzfy20180408
引用本文: 杨宇, 朱秀云, 杨智博, 李亮. 楔形空间中圆弧形沉积对平面P波的散射解析解[J]. 震灾防御技术, 2018, 13(4): 810-821. doi: 10.11899/zzfy20180408
Yang Yu, Zhu Xiuyun, Yang Zhibo, Li Liang. Analytic Solution for Diffraction of Plane P Waves by a Circular Alluvial Valley in Wedge-shaped Space[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 810-821. doi: 10.11899/zzfy20180408
Citation: Yang Yu, Zhu Xiuyun, Yang Zhibo, Li Liang. Analytic Solution for Diffraction of Plane P Waves by a Circular Alluvial Valley in Wedge-shaped Space[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 810-821. doi: 10.11899/zzfy20180408

楔形空间中圆弧形沉积对平面P波的散射解析解

doi: 10.11899/zzfy20180408
基金项目: 

核电站地震紧急处置技术研究及示范应用 2017YFC1500804

国家自然科学基金 51408255

详细信息
    作者简介:

    杨宇, 女, 生于1978年。高级工程师。主要从事地震波动的数值模拟方法研究及核电厂土建结构抗震相关工作。E-mail:yangyu@chinansc.cn

    通讯作者:

    李亮, 男, 生于1986年。工程师。主要从事核电厂土建结构抗震安全工作。E-mail:liliang@chinansc.cn

Analytic Solution for Diffraction of Plane P Waves by a Circular Alluvial Valley in Wedge-shaped Space

  • 摘要: 基于大圆弧假定,利用傅立叶-贝塞尔(Fourier-Bessel)级数波函数展开法,给出了含圆弧形沉积的楔形空间对平面P波的散射解析解。为方便构造地表面引起的散射波场,本文利用2个大圆弧面来模拟地表面,由连续性边界条件建立方程并求解得出该问题的解析解。算例结果表明,楔形空间沉积附近地表的动力响应特征依赖于入射波频率、入射角度、沉积内外介质特性与楔形夹角等因素,且位移放大效应较半空间情况更为显著。
  • 图  1  模型和波散射示意图

    Figure  1.  Illustration of the model and scattering of waves

    图  2  沉积附近地表位移幅值(θ0=0°)

    Figure  2.  Surface displacement amplitude around the alluvial valley (θ0=0°)

    图  3  沉积附近地表位移幅值(θ0=60°)

    Figure  3.  Surface displacement amplitude around the alluvial valley (θ0=60°)

    图  4  沉积附近地表位移幅值(θ0=90°)

    Figure  4.  Surface displacement amplitude around the alluvial valley (θ0=90°)

    图  5  沉积附近地表位移幅值(θ0=0°,η=5.0)

    Figure  5.  Surface displacement amplitude around the alluvial valley (θ0=0°, η=5.0)

    图  6  沉积附近地表位移幅值(θ0=90°,η=10.0)

    Figure  6.  Surface displacement amplitude around the alluvial valley (θ0=90°, η=10.0)

  • 杜修力, 熊建国, 关慧敏, 1992.平面SH波散射问题的边界积分方程分析法.地震学报, 15(3):331-338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000376252
    胡聿贤, 孙平善, 章在墉等, 1980.场地条件对震害和地震动的影响.地震工程与工程振动, (1):35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000199271
    梁建文, 张郁山, 顾晓鲁等, 2000.圆弧形层状沉积河谷场地在平面SH波入射下动力响应分析.岩土工程学报, 22(4):396-401. doi: 10.3321/j.issn:1000-4548.2000.04.002
    梁建文, 严林隽, 李军伟等, 2001.圆弧形沉积河谷场地在平面P波入射下的响应.岩土力学, 22(2):138-143. doi: 10.3969/j.issn.1000-7598.2001.02.005
    廖振鹏, 2002.工程波动理论导论.2版.北京:科学出版社.
    刘中宪, 梁建文, 2010a.楔形空间中圆弧形沉积对平面SH波的散射解析解.天津大学学报, 43(7):573-582. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201007002
    刘中宪, 梁建文, 2010b.楔形空间中圆弧形凹陷对平面SH波的散射解析解.力学季刊, 31(3):363-370. http://d.old.wanfangdata.com.cn/Periodical/lxjk201003007
    史文谱, 刘殿魁, 宋永涛等, 2006.直角平面内圆孔对稳态SH波的散射.应用数学和力学, 27(12):1417-1423. doi: 10.3321/j.issn:1000-0887.2006.12.004
    史文谱, 刘殿魁, 禇京莲等, 2007.二维直角平面内固定圆形夹杂对稳态入射反平面剪切波的散射.爆炸与冲击, 27(1):57-62. doi: 10.3321/j.issn:1001-1455.2007.01.010
    杨宇, 2005.含圆弧形沉积的楔形地形对平面SH波和P波的散射.天津: 天津大学. http://cdmd.cnki.com.cn/article/cdmd-10056-2006053015.htm
    杨宇, 李小军, 贺秋梅, 2011.自贡西山公园山脊场地地形和土层效应数值模拟.震灾防御技术, 6(4):436-447. doi: 10.3969/j.issn.1673-5722.2011.04.009
    周锡元, 1965.土质条件对建筑物所受地震荷载的影响.见: 中国地震局工程力学研究所地震工程研究报告集(第二集).北京: 科学出版社.
    Boore D. M., Larner K. L., Aki K., 1971. Comparison of two independent methods for the solution of wave-scattering problems:response of a sedimentary basin to vertically incident SH waves. Journal of Geophysical Research, 76 (2):558-569. doi: 10.1029/JB076i002p00558
    Dermendjian N., Lee V. W., Liang J. W., 2003a. Anti-plane deformations around arbitrary-shaped canyons on a wedge-shape half-space:moment method solutions. Earthquake Engineering and Engineering Vibration, 2 (2):281-287. doi: 10.1007/s11803-003-0011-y
    Dermendjian N., Lee V. W., 2003b. Moment solutions of anti-plane (SH) wave diffraction around arbitrary-shaped rigid foundations on a wedge-shape half space. ISET Journal of Earthquake Technolog, 40 (2-4):161-172.
    Dravinski M., 1983. Scattering of plane harmonic SH wave by dipping layers or arbitrary shape. Bulletin of the Seismological Society of America, 73 (5):1303-1319. http://d.old.wanfangdata.com.cn/Periodical/rjxb200603005
    Lee V. W., Sherif R. I., 1996a. Diffraction around circular canyon in elastic wedge space by plane SH-waves. Journal of Engineering Mechanics, 122 (6):539-544. doi: 10.1061/(ASCE)0733-9399(1996)122:6(539)
    Lee V. W., Sherif R. I., 1996b. Diffraction around a circular alluvial valley in an elastic wedge-shaped medium due to plane SH-waves. European Earthquake Engine-Erring, 3:21-28.
    MacDonald, H. M., 1902. Electric waves. London, England:Cambridge University Press.
    Sánchez-Sesma F. J., Ramos-Martínez J., Campillo M., 1993. An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves. Earthquake Engineering & Structural Dynamics, 22 (4):279-295. doi: 10.1002-eqe.4290220402/
    Sánchez-Sesma F. J., 1985. Diffraction of elastic SH waves by wedges. Bulletin of the Seismological Society of America, 75 (5):1435-1446.
    Todorovska M. I., Lee V. W., 1991. Surface motion of shallow circular alluvial valleys for incident plane SH waves-analytical solution. Soil Dynamics and Earthquake Engineering, 10 (4):192-200. doi: 10.1016/0267-7261(91)90033-V
    Trifunac M. D., 197l. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves. Bulletin of the Seismological Society of America, 61 (6):1755-l770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=077665160333ddbe42edea5a6db53c25
    Wong H. L., Trifunac M. D., 1974. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves. Bulletin of the Seismological Society of America, 64 (5):1389-1408. http://www.cnki.com.cn/Article/CJFDTotal-DZXY201105007.htm
    Yuan X. M., Liao Z. P., 1995. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arccross-section. Earthquake Engineering & Structural Dynamics, 24 (10):1303-1313. http://www.sciencedirect.com/science/article/pii/0267726194900116
  • 加载中
图(6)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回