• ISSN 1673-5722
  • CN 11-5429/P

利用混合法合成成都断层宽频地震动

周红 吴清 吕红山 俞言祥

周红, 吴清, 吕红山, 俞言祥. 利用混合法合成成都断层宽频地震动[J]. 震灾防御技术, 2018, 13(4): 764-774. doi: 10.11899/zzfy20180404
引用本文: 周红, 吴清, 吕红山, 俞言祥. 利用混合法合成成都断层宽频地震动[J]. 震灾防御技术, 2018, 13(4): 764-774. doi: 10.11899/zzfy20180404
Zhou Hong, Wu Qing, Lü Hongshan, Yu Yanxiang. The Simulated Ground Motion of Chengdu Fault in Broadband Frequency by the Hybrid Method[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 764-774. doi: 10.11899/zzfy20180404
Citation: Zhou Hong, Wu Qing, Lü Hongshan, Yu Yanxiang. The Simulated Ground Motion of Chengdu Fault in Broadband Frequency by the Hybrid Method[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 764-774. doi: 10.11899/zzfy20180404

利用混合法合成成都断层宽频地震动

doi: 10.11899/zzfy20180404
基金项目: 

国家重点研发计划 2017YFC1500205

国家自然基金面上项目 41774064

详细信息
    作者简介:

    周红, 女, 生于1969年。研究员。主要从事强地面运动模拟、地震波传播激发理论的研究。E-mail:zhouhong@cea-igp.ac.cn

The Simulated Ground Motion of Chengdu Fault in Broadband Frequency by the Hybrid Method

  • 摘要: 首先,依据成都活断层探测的深、浅层地震勘探资料、钻井资料、地形资料,建立成都地区地下三维介质模型,并基于活断层确定的双石-大川断裂发生7.6级潜在地震的地震活动性探测结果,设定断层破裂震源模型,采用随机有限断层方法模拟短周期地震动、谱元法模拟长周期地震动,利用混合法通过频域合成技术获得了研究区域的宽频地震动。最后,讨论了合成结果的PGA、PGV、PGD以及0.3s和1.0s反应谱的分布特征,依据分布结果对成都市区进行了本次设定地震的地震动讨论。
  • 图  1  三维P波速度结构

    Figure  1.  3D structure of P wave velocity

    图  2  凹凸体空间分布

    Figure  2.  The distribution of asperities

    图  3  双石-大川破裂起始时间

    Figure  3.  The rupture initial time of Shuangshi-Dachuan fault

    图  4  合成的成都市宽频带地震动时程

    Figure  4.  The simulated ground motion of Chengdu city

    图  5  计算区域加速度峰值(PGA)分布

    Figure  5.  The distribution of the peak ground acceleration (PGA) in the computation zone

    图  6  计算区域速度峰值(PGV)分布

    Figure  6.  The distribution of the peak ground velocity (PGV) in the computation zone

    图  7  计算区域位移峰值(PGD)分布

    Figure  7.  The distribution of the peak ground displacement (PGD) in the computation zone

    图  8  计算区加速度反应谱(PSA)分布

    Figure  8.  The distribution of pseudo-spectral acceleration (PSA) in the computation zone

    表  1  双石-大川断裂各段参数

    Table  1.   The fault parameters of Shuangshi-Dachuan fault

    段号 端点纬度/°N 端点经度/°E 走向/° 倾向/° 长度/km
    1 31.07 103.62 230 43.85 15
    2 30.98 103.53 210 43.74 18
    3 30.89 103.47 220 43.59 18
    4 30.58 103.16 219 44.49 21
    5 30.39 102.98 245 44.49 15
    6 30.33 102.85 208 43.27 12
    下载: 导出CSV

    表  2  双石-大川断裂计算参数

    Table  2.   The computation parameters of Shuangshi-Dachuan fault

    参数 设定值
    断层长度/km 126
    断层宽度/km 24
    滑动角/° 90
    长度方向分割量(NL 42
    宽度方向分割量(NW 8
    子源的长度/km 3
    子源的宽度/km 3
    震级 7.6
    总面积/km2 3024
    最大凹凸体面积/km2 483
    次级凹凸体面积/km2 181
    破裂速度/km·s-1 2.9
    破裂形式 同心圆
    震源时间/s 3.01
    品子因子Q(f) 500f0.5
    应力降/bar 90
    下载: 导出CSV
  • Atkinson G. M., Assatourians K., Boore D. M., et al., 2009. A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bulletin of the Seismological Society of America, 99 (6):3192-3201. doi: 10.1785/0120090058
    Atkinson G. M., Goda K., Assatourians K., 2011. Comparison of nonlinear structural responses for accelerograms simulated from the stochastic finite-fault approach versus the hybrid broadband approach. Bulletin of the Seismological Society of America, 101 (6):2967-2980. doi: 10.1785/0120100308
    Boore D. M., 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73 (6):1865-1894.
    Boore D. M., 2003. Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160 (4):635-676. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_773ad1cbf1dcba3266bb060c1201c3cd
    Boore D. M., Thompson E. M., 2015. Revisions to some parameters used in stochastic-method simulations of ground motion. Bulletin of the Seismological Society of America, 105 (2A):1029-1041. doi: 10.1785/0120140281
    Faccioli E., Maggio F., Paolucci R., et al., 1997. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. Journal of Seismology, 1 (2):237-251. doi: 10.1023-A-1009758820546/
    Frankel A., 2009. A constant stress-drop model for producing broadband synthetic seismograms:comparison with the Next Generation Attenuation relations. Bulletin of the Seismological Society of America, 99 (2A):664-680. doi: 10.1785/0120080079
    Graves R. W., Pitarka A., 2004. Broadband time history simulation using a hybrid approach. In: Proceedings of the 13th World Conference Earthquake Engineering. Vancouver, Canada, 1-6 August.
    Graves R. W., Pitarka A., 2010. Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100 (5A):2095-2123. doi: 10.1785/0120100057
    Komatitsch D., Vilotte J. P., 1998. The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88 (2):368-392. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=88/2/368
    Komatitsch D., Tromp J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139 (3):806-822. doi: 10.1046/j.1365-246x.1999.00967.x
    Motazedian D., Atkinson G. M., 2005. Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95 (3):995-1010. doi: 10.1785/0120030207
    Motazedian D., Moinfar A., 2006. Hybrid stochastic finite fault modeling of 2003, M 6.5, Bam earthquake (Iran). Journal of Seismology, 10 (1):91-103. doi: 10.1007/s10950-005-9003-x
    Pacor F., Cultrera G., Mendez A., et al., 2005. Finite fault modeling of strong ground motions using a hybrid deterministic-stochastic approach. Bulletin of the Seismological Society of America, 95 (1):225-240. doi: 10.1785/0120030163
    Patera A. T., 1984. A spectral element method for fluid dynamics:laminar flow in a channel expansion. Journal of Computational Physics, 54 (3):468-488. doi: 10.1016/0021-9991(84)90128-1
    Priolo E., Carcione J. M., Seriani G., 1994. Numerical simulation of interface waves by high-order spectral modeling techniques. The Journal of the Acoustical Society of America, 95 (2):681-693. doi: 10.1121/1.408428
    Satyam N., Rao K. S., 2009. Estimation of peak ground acceleration for Delhi NCR using FINSIM, a finite fault simulation technique. International Journal of Geotechnics and Environment, 1 (2):147-159.
    Seriani G., Priolo E., Carcione J. M., et al., 1992. High-order spectral element method for elastic wave modeling. In:Proceedings of the 62th SEG Annual Meeting. New Orleans, Louisiana:Society of Expanded Abstracts, 1285-1288.
    Shahjouei A., Pezeshk S., 2015. Synthetic seismograms using a hybrid broadband ground-motion simulation approach:application to central and eastern united states. Bulletin of the Seismological Society of America, 105 (2A):686-705. doi: 10.1785/0120140219
    Somerville P., Irikura K., Graves R., et al. 1999.Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Leteers, 70 (1):59-80. doi: 10.1785/gssrl.70.1.59
    Zhou H., Jiang H., 2015. A new time-marching scheme that suppresses spurious oscillations in the dynamic rupture problem of the spectral element method:the weighted velocity Newmark scheme. Geophysical Journal International, 203 (2):927-942. doi: 10.1093/gji/ggv341
    Zonno G., Carvalho A., Franceschina G., et al., 2005. Simulating earthquake scenarios using finite-fault model for the Metropolitan Area of Lisbon (MAL). In: Proceedings of the 250th Anniversary of the 1755 Lisbon Earthquake. Portugal, 1-4 November.
    Zonno G., Carvalho A., 2006. Modeling the 1980 Irpinia earthquake by stochastic simulation. Comparison of seismic scenarios using finite-fault approaches. In: Proceedings of the 1st European Conference on Earthquake Engineering and Seismology. Geneva, Switzerland, 3-8 September.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  12
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回