Study on Support Location for Vulnerable RC Structures
-
摘要: 近年来,随着经济、技术的进步以及抗震意识的加强,建筑结构加固也飞速发展。在地震多发的农村地区,为了提高建筑结构的抗震性能,但同时又缺乏一定的经济基础和理论知识支撑,导致很多简单粗糙的支撑建筑结构的措施出现,这些支撑方案大多缺乏科学的设计与评估。本文针对这一现象,以某典型的非正规设计的3层2跨框架结构为例,分析评价支撑边框和支撑中框对该框架结构地震作用下抗倒塌性能的影响。通过增量动力分析(IDA)计算方法,结合结构易损性方程评估结构的抗倒塌能力,计算结果表明支撑中框和支撑边框能够将非正规结构在罕遇地震作用下的倒塌概率从17.5%降至2.4%和6%。在此基础上,进一步分析了2种支撑位置对结构在3个典型地震强度作用下对结构响应的影响。结果表明,支撑框架结构中框对结构抗倒塌能力的提升和抗震性能的保证效果比支撑边框更好,在条件允许的情况下,应优先考虑支撑中框。Abstract: With the progress of economy and the strengthening of seismic consciousness, the strengthening of building structure has also developed rapidly in the past decades. However, there are many limits to improve structural seismic resistance in rural seismic regions. There are many simple and rough measures to support the building structures, in which most of them are lack of scientific design and evaluation. There exists a lot of vulnerable buildings that are potentially in dangerous condition. In this paper, we use a typical 2-span 3-storey frame structure as an example, to explore the impact of support location of a common support form on anti-collapse performance. Incremental dynamic analysis is used to organize nonlinear dynamic collapse analysis, and structural collapse fragility analysis is utilized to assess structural collapse safety. The results show that the simple support measures for vulnerable structure can reduce the collapse probability of the vulnerable building from 17.5% to 2.4% and 6%. The result shows that by exploring the structural seismic response with different frames supported, the supporting middle frame can improve the vulnerable building better than the side frame. Our results of this study can provide some suggestions for building support in seismic rural areas.
-
Key words:
- Collapse fragility /
- Vulnerable RC structure /
- Seismic performance /
- Collapse resistance
-
表 1 方案设计
Table 1. Designing schemes
方案 支撑位置 边框1 中框 边框2 非正规设计框架结构 无 无 无 支撑中框 无 有 无 支撑边框 有 无 无 表 2 地震记录台站基本信息
Table 2. Basic information of the ground motion records
地震 年份 台站 MW VS30/m·s-1 帕克菲尔德 1966 Cholame - Shandon Array #12 6.19 408.93 帕克菲尔德 1966 San Luis Obispo 6.19 493.5 科林加 1983 Parkfield - Cholame 2E 6.36 522.74 科林加 1983 Parkfield - Cholame 3E 6.36 397.36 科林加 1983 Parkfield - Fault Zone 10 6.36 372.73 科林加 1983 Parkfield - Fault Zone 9 6.36 372.26 科林加 1983 Parkfield - Gold Hill 3E 6.36 450.61 科林加 1983 Parkfield - Gold Hill 4W 6.36 421.2 科林加 1983 Parkfield - Gold Hill 5W 6.36 441.37 科林加 1983 Parkfield - Stone Corral 2E 6.36 566.33 科林加 1983 Parkfield - Vineyard Cany 4W 6.36 386.19 科林加 1983 Parkfield - Vineyard Cany 6W 6.36 392.24 -
韩小雷, 崔济东, 季静等, 2015.强震作用下基于构件性能的钢筋混凝土框架结构抗倒塌能力评估.建筑结构学报, 36(12):27-34. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201512004 霍林生, 李宏男, 肖诗云等, 2009.汶川地震钢筋混凝土框架结构震害调查与启示.大连理工大学学报, 49(5):718-723. http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb200905017 李钢, 刘晓宇, 李宏男, 2009.汶川地震村镇建筑结构震害调查与分析.大连理工大学学报, 49(5):724-730. http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb200905018 吕大刚, 于晓辉, 陈志恒, 2011.钢筋混凝土框架结构侧向倒塌地震易损性分析.哈尔滨工业大学学报, 43(6):1-5. doi: 10.3969/j.issn.1009-1971.2011.06.001 孙景江, 马强, 石宏彬等, 2008.汶川地震高烈度区城镇房屋震害简介.地震工程与工程振动, 28(3):7-15. http://d.old.wanfangdata.com.cn/Periodical/dzgcygczd200803002 同济大学土木工程防灾国家重点实验室, 2008.汶川地震震害.上海:同济大学出版社. 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2008.GB 50011-2010建筑抗震设计规范(附条文说明)(2016年版).北京: 中国建筑工业出版社. 周铁钢, 张浩, 2014.鲁甸地震村镇建筑震害调查与分析.地震工程与工程振动, 34(5):75-80. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201405010.htm Baker J. W., 2015. Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31 (1):579-599. doi: 10.1193/021113EQS025M Federal Emergency Management Agency, 2009. Quantification of Building Seismic Performance Factors.Washington DC:Federal Emergency Management Agency. Haselton C. B., Liel A. B., Deierlein G. G., et al., 2011. Seismic collapse safety of reinforced concrete buildings. Ⅰ:assessment of ductile moment frames. Journal of Structural Engineering, 137 (4):481-491. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Structural%20Engineering&volume=137&issue=4&spage=481 Mansour Y. E. I., 2016. Assessment of seismic retrofitting techniques of RC structures using fragility curves. International Journal of Structural and Civil Engineering Research, 5 (3):175-182. Vamvatsikos D., Cornell C. A., 2002. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31 (3):491-514. doi: 10.1002/(ISSN)1096-9845