• ISSN 1673-5722
  • CN 11-5429/P

云平台下地震监测台网软件系统的应用方案研究

李勇 段毅

赵真,郭红梅,张莹,鲁长江,何宗杭,2023. 基于特征分区的建筑物数据空间化研究. 震灾防御技术,18(3):632−641. doi:10.11899/zzfy20230320. doi: 10.11899/zzfy20230320
引用本文: 李勇, 段毅. 云平台下地震监测台网软件系统的应用方案研究[J]. 震灾防御技术, 2018, 13(1): 245-253. doi: 10.11899/zzfy20180123
Zhao Zhen, Guo Hongmei, Zhang Ying, Lu Changjiang, He Zonghang. Research on Building Data Spatialization Based on Feature Partition[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 632-641. doi: 10.11899/zzfy20230320
Citation: Li Yong, Duan Yi. Application of Seismic Network System under the Cloud Platform[J]. Technology for Earthquake Disaster Prevention, 2018, 13(1): 245-253. doi: 10.11899/zzfy20180123

云平台下地震监测台网软件系统的应用方案研究

doi: 10.11899/zzfy20180123
基金项目: 

云南省地震局传帮带项目 201409

详细信息
    作者简介:

    李勇, 男, 生于1980年。硕士, 工程师。主要从事地震数据处理及地震监测技术研究。E-mail:yneq@qq.com

Application of Seismic Network System under the Cloud Platform

  • 摘要: 针对数字化地震台网JOPENS软件系统的技术特点及功能需求,在对当前各种主流云计算平台进行比较的基础上,基于较为合适的阿里云计算平台,提出了在云环境下部署JOPENS系统的应用方案。测试结果表明JOPENS系统部署在云环境下能够提升测震台网中心运行的稳定性及可扩展性,并节约运行维护成本。该研究对于当前三网融合新形势下云南省地震台网的建设及运行工作具有借鉴意义。
  • 建筑物作为灾害的主要承灾体(陈振拓等,2012),其空间分布是震前开展地震灾害风险评估、震后进行灾害损失快速评估的基础数据(王龙等,2007谷国梁等,2016李皓等,2018)。基于精细可靠的建筑物空间分布数据开展评估,震前可给出抗震薄弱环节及相应的抗震措施、危旧房屋集中地段、高风险小区(孙柏涛等,2017王志涛等,2019);震后可给出更可靠的灾情快速评估结果和可能被困人员的空间分布,为地震应急处置和现场应急救援提供可靠的信息支持,从而达到减轻地震灾害损失的目的(韩贞辉等,2013丁文秀等,2015)。

    目前,建筑物数据主要有两类:一类是建筑物统计数据,其广泛应用于震后快速评估中(王晓青等,2009徐国栋等,2011),该数据与所属区域的空间特征脱节而无法反映区域内建筑物空间分布特点,仅反映统计单元内建筑物的总体情况,且其可靠性和精细化程度较低,数据更新速度慢,时效性较差;另一类是基于多源数据融合方式生成的建筑物公里格网数据(韩贞辉,2013杨海霞等,2015杨海霞,2015),该数据虽能较好地反映建筑物空间分布的宏观特征,但不能准确反映建筑物空间分布的细节特征,且未考虑不同地域建筑物空间分布的差异,无法反映区域间建筑物空间分布的异质性。然而建筑物空间分布具有明显的地域差异,采用同一建筑物空间分布格网化模型具有一定的局限性。

    针对未考虑建筑物空间分布异质性问题,在充分考虑目标区域自然环境、社会经济条件等差异的基础上,开展建筑物特征一致性分区。根据分区结果,采用抽样的方法获取各区域建筑物样本数据。在此基础上,探究不同区域建筑物空间分布与各影响因子之间的关系,分区构建基于多因素的建筑物数据空间化模型,并根据模型生成建筑物格网数据,从而提高建筑物数据格网化精度。

    建筑物空间分布是受诸多因素影响的复杂非线性问题,不同地区的社会经济情况、自然地理条件等存在差异,建筑物空间分布特征也不相同(程晓亮等,2008曾祥贵,2013)。因此,需将具有相似建筑物空间分布特征的区域划分为同一区域。在此基础上,分析不同区域建筑物空间分布与各影响因子之间的关系,分区构建建筑物空间分布格网化模型,反演建筑物空间分布情况。具体技术路线如图1所示。

    图 1  总体技术路线
    Figure 1.  Overall technical route

    首先,从自然地理和社会经济两方面出发选择分区指标,并以乡镇为基本单元进行统计,利用主成分分析方法提取主要特征,对其进行特征一致性分区。然后,在归纳总结目前基于多因素的建筑物空间分布格网化方法考虑影响因子的基础上,综合选择自然因子(如高程、坡度、坡向、地形起伏度及河流等)、社会经济因子(如道路、土地利用等),分析各影响因子对建筑物空间分布的影响,并对各因子进行分级设计。在此基础上,针对不同区域,从研究区中选取一定数量的格网作为建模区,采用目视解译的方式获取建模区的建筑物,统计分析不同建模区建筑面积密度与各影响因子之间的关系。采用相关系数法计算不同区域内各影响因子对建筑物空间分布的影响权重,并以归一化的相关系数作为该类因子的权重系数,对于同一类因子的不同子类,采用建筑面积密度作为权重的估计值。在此基础上,分区构建基于多因素的建筑物数据格网化模型。最后,随机选择若干格网作为检验样本,开展模型精度评估。

    在借鉴已有研究的基础上,本文依据土地地表覆盖数据分类体系(Gong等,2013Li等,2017),将研究区域划分为建设用地和非建设用地,其中建设用地指不透水层,包括城镇用地、工矿用地、商服用地、交通设施用地等,非建设用地包括耕地、森林、草地、灌木林、湿地、水域、裸地、冰川等。由于建筑物大多分布在建设用地内,少数或零星分布在非建设用地内(杨海霞等,2015),因此,针对这两类区域分别建立基于多因素的建筑物数据空间化模型。

    1.2.1   单因子建筑物空间分布空间化权重

    将研究区划分为规则格网,假定共有$ {N}_{t} $个格网,如果格网t内存在影响建筑物空间分布的因子$ {F}_{i} $,其与建设用地和非建设用地的空间分布关系如图2所示。为探究因子$ {F}_{i} $对建筑物空间分布的影响程度,将其进一步划分为Q个子因子,在假设研究区内子因子$ {F}_{ij} $在第m类区域的建筑占地面积密度$ {D}_{mij} $不变的基础上,统计格网g内与第m类区域内第j个子因子$ {F}_{ij} $的占地面积为$ {A}_{mgij} $,则格网g内依据因子$ {F}_{i} $估计的建筑面积为:

    图 2  建设用地与非建设用地因子分布示意图
    Figure 2.  Schematic diagram of factor distribution of construction land and non-construction land
    $$ {S}_{ mgi}=\sum _{j=1}^{Q}\left({D}_{mij}\cdot{A}_{mgij}\right) $$ (1)

    $ {\mathrm{D}}_{\mathrm{m}\mathrm{i}\mathrm{j}} $建筑占地面积密度常采用抽样统计的方式获取。假设抽样区域中,第m类区域中第i个因子第j个子因子$ {F}_{ij} $的占地面积为$ {A}_{mij} $、建筑面积为$ {S}_{mij} $,则建筑占地面积密度${{D}}_{{m}{i}{j}}$计算公式为:

    $$ {D}_{mij}={S}_{ mij}/{A}_{mij} $$ (2)
    1.2.2   多因子建筑物分布空间化权重

    建筑物空间分布是自然因子和社会经济条件共同作用的结果(江东等,2002),因此,基于单一因子的建筑物数据空间化模型可靠性及结果的准确度较低。本文选择多源数据融合的方法,在各类单因子格网建筑面积预测的基础上,根据各类因子之间的权重,通过权重比求和的形式综合同一格网内各类因子建筑面积预测结果。

    假设影响建筑物空间分布的因子有M类,在m类区域中,第i类因子$ {F}_{i} $的建筑面积分配权重为$ {W}_{mi} $,则格网g内建筑面积的计算公式为:

    $$ {S}_{ mg}=\sum _{i=1}^{N}\left({W}_{mi}\cdot{S}_{ mgi}\right) $$ (3)

    目前,确定各类因子权重$ {W}_{mi} $的方法主要有专家打分法、层次分析法、相关系数法等。其中专家打分法的主观性太强,与专家的偏好程度有很大关系。层次分析法依赖于专家经验,主观性相较于专家打分法有所降低。相关系数法是通过抽样确定的,目前在进行GIS空间分析时使用较多。

    本文以雅安市为研究区开展试验。该区位于四川省中部,跨越四川盆地和青藏高原两大地形,地势呈北、西、南较高,东部和中部较低。全市辖2个市区和6个县,幅员面积为15 046 km2,其中山地占比94%,平原占比6%。

    本文在分析研究区内建筑物空间分布特征及建筑物空间分布影响因子的基础上,模拟建筑物空间分布情况。因此,本文所需的基础数据主要包括行政区划数据、土地覆盖类型数据(FROM-GLC30)、DEM数据、道路交通数据、河流水系数据及人口统计数据。

    由于建筑物空间分布具有显著的地域差异,若采用同一建筑物空间分布格网化模型具有一定的局限性,数据准确性难以保证。故本文在构建建筑物格网化模型时,首先进行建筑物空间分布特征一致性分区。建筑物空间分布受诸多因素影响,主要包括自然环境(如高程、坡度、坡向、水系等)及社会条件(如土地利用、道路、人口等),本文综合考虑上述方面进行建筑物一致性分区。

    根据研究区建筑物空间分布特征,本文选择人口密度、路网密度、河网密度、平均高程、平均坡度、建设用地面积比例、耕地面积比例共7个指标进行建筑物特征一致性分区。首先,以乡镇为基本单元统计各指标的值,对其进行极差标准化处理,利用主成分分析方法进行降维。分析得到的第一主成分特征值和第二主成分特征值分别为3.743、1.483,且这两个主分量承载了74.68%的原始信息,其余主成分特征值均小于1,表明引入该主成分的影响程度不如1个基本变量。因此,选择第一主成分和第二主成分基本可表达建筑物分布特征。根据主成分分析得到的第一主成分和第二主成分计算公式,计算雅安市143个乡镇主第一主成分和第二主成分得分,再根据各主成分贡献率的比重作为权值,得到各乡镇综合得分,利用ArcGIS软件自然断点法将其划分为5个特征分区,如图3所示。

    图 3  雅安市建筑物特征分区结果
    Figure 3.  Results of building characteristic zoning in Ya'an city

    在归纳总结目前基于多因素的建筑物空间分布格网化方法考虑因素的基础上,结合研究区建筑物空间分布特征,综合选取土地利用、高程、坡度、坡向、河流距离、道路距离、地形起伏度7类因子,并对各类因子进行合理分类或分级,具体方案如表1所示。其中,高程等级划分原则为对建筑物分布密集段高程细分,对建筑物分布稀疏段高程粗分;坡度等级划分原则依据国际地理学联合会地貌调查与地貌制图委员制定的分类标准;坡向根据方位划分为阴坡、半阴坡、阳坡、半阳坡。河流距离和道路距离采用等间距划分等级;地形起伏度根据我国基本地貌类型划分等级。

    表 1  影响因子子类分级
    Table 1.  Classification of influencing factors
    土地利用高程/m坡度/(°)坡向/(°)河流距离/m道路距离/m地形起伏度/m
    耕地500~800平原
    (0~0.5)
    平缓坡
    (−1)
    0~2000~200平原(<30)
    森林800~1 100微斜坡(0.5~2)向阳坡(135~225)200~400200~400台地
    (30~70)
    草地1 100~1 400缓斜坡(2~5)向阳坡
    (45~135,
    225~315)
    400~600400~600丘陵
    (70~200)
    灌木林1 400~1 700斜坡
    (5~15)
    阴坡(0~45,
    315~360)
    600~800600~800小起伏山地(200~500)
    湿地1 700~2 000陡坡
    (15~35)
    800~1 000800~1 000中起伏山地(500~1 000)
    水体2 000~2 400峭坡
    (35~55)
    1 000~1 2001 000~1 200大起伏山地(1 000~2 500)
    不透水面2 400~2 800垂直壁
    (55~90)
    1 200~1 4001 200~1 400极大起伏山地(>2 500)
    裸地2 800~3 2001 400~1 6001 400~1 600
    冰川3 200~3 8001 600~1 8001 600~1 800
    3 800~4 4001 800~2 0001 800~2 000
    >4 400>2 000>2 000
    下载: 导出CSV 
    | 显示表格

    以雅安市为研究区,将其划分为300 m×300 m的规则格网,基于建筑物特征一致性分区结果,从不同区域分别选取一定数量的格网作为建模区,如图4所示。根据天地图影像,采用目视解译的方式获取建模区内单体建筑物数据。

    图 4  抽样格网空间分布
    Figure 4.  Spatial distribution of sampling grid

    根据研究区各类因子数据(图5),针对不同区域,分别将抽样格网的影响因子与建设用地、非建设用地进行叠加分析,统计区域内各影响因子的子类或分级占地面积和建筑面积,根据式(2)确定各子类或分级的建筑占地面积密度。

    图 5  雅安市影响因子分布
    Figure 5.  Distribution of influencing factors in Ya'an city

    针对各类影响因子权重的确定,本文选用相关系数法,根据同一特征分区内某一因子的子类或分级建筑面积密度与子类或分级占地面积比例之间的关系,确定相关系数,并以归一化的相关系数作为该类因子的权重系数,结果如表2所示。

    表 2  雅安市不同特征分区抽样统计的各类因子权重
    Table 2.  Weights of various factors in sampling statistics in different regions of Ya'an city
    分区区域划分权重
    土地利用高程坡度坡向河流距离道路距离地形起伏度
    一区建设用地0.2630.1080.3000.329
    非建设用地0.2440.2250.1640.0640.0830.220
    二区建设用地0.2300.2310.1440.1590.236
    非建设用地0.1630.1780.1540.1870.1410.177
    三区建设用地0.2160.2130.1560.2170.198
    非建设用地0.2270.1770.2240.1830.189
    四区建设用地0.0890.1950.1850.1690.1480.214
    非建设用地0.2360.1830.2210.1750.185
    五区建设用地0.1760.1830.1690.1560.1470.170
    非建设用地0.1560.1680.1920.1800.1480.157
    下载: 导出CSV 
    | 显示表格

    在确定不同特征区各因子的不同子类或分级的建筑面积密度和各类因子权重的基础上,对雅安市内所有格网进行影响因子、建设用地和非建设用地统计,在此基础上,分别进行建设用地和非建设用地建筑物空间分布预测。考虑到1个格网内有可能出现预测面积小于1栋房屋的建筑面积,这与实际情况不符,需对这部分数据予以舍去。通过对雅安市建筑物开展野外调查,确定建筑用地单栋房屋建筑面积约为150 m2、非建筑用地单栋房屋建筑面积约为200 m2,因此,将建设用地预测面积<150 m2的格网建筑面积舍弃,将非建设用地预测面积<200 m2的格网建筑面积舍弃,即将格网的建筑面积设置为0。最后,将同一格网内的建设用地和非建设用地建筑面积相加,得到雅安市建筑面积预测结果,如图6所示。

    图 6  雅安市建筑物数据空间化结果
    Figure 6.  Spatial results of building data in Ya'an city

    为验证建筑物空间分布格网化方法的预测精度,从研究区中随机选择若干格网作为验证样本,对验证格网内的建筑物进行解译,并统计格网内建筑面积,与模型得到的预测值进行对比,从而计算建筑面积相对误差,分级统计结果如表3所示。由表3可知,严重低估或严重高估的比例≤10%,较准确估计的比例接近75%,说明本文模型具有较高的精度。精度较差的格网主要分布在建筑分布特别密集或稀疏的地区,其原因可能在于建模时这部分样本抽取的比例较小,构建的模型对这类格网估计的结果不是很准确或未考虑因素之间的相关性,造成信息冗余。

    表 3  相对误差分级统计
    Table 3.  Statistics of relative error classification
    分级数目比例/%
    严重低估,<−50%7944.7
    一般低估,[−50%,−20%)6023.6
    较准确估计,[−20%,20%]12 56874.7
    一般高估,(20%,50%]1 2287.3
    严重高估,>50%1 6269.7
    下载: 导出CSV 
    | 显示表格

    本文考虑到建筑物空间分布的地域差异,根据影响建筑物空间分布的因素进行建筑物特征一致性分区。在分析建筑物空间分布影响因子的基础上,结合区域建筑物空间分布特征,综合选取土地利用、高程、坡度、坡向、河流距离、道路距离、地形起伏度7类因子,以归一化的相关系数作为各因子的权重系数,将建筑面积密度作为各因子子类或分级的权重,分区构建基于多因素的建筑物格网化模型,预测建筑物空间分布情况。以雅安市为研究区,得到了300 m格网的建筑物空间分布数据,并开展模型精度检验,结果表明该方法具有较好的精度。基于本文提出的方法获取的建筑物空间分布格网可为震前防御、震中救灾和震后重建提供可靠的数据支撑。

    建筑物空间分布情况是考虑诸多影响因素的复杂问题,影响因子的选取是否全面、因子之间的相关性如何确定均会对建筑物空间分布产生影响。未来可深入分析影响建筑物空间分布的因素,进一步提高模型的精度。

  • 图  1  JOPENS系统的功能模块划分

    Figure  1.  Functional modules of JOPENS

    图  2  基于阿里云的JOPENS系统应用方案

    Figure  2.  The JOPENS system deployment in the Ali Cloud environment

    图  3  通过云服务器计算的漾濞5.1级地震震源机制解

    Figure  3.  The focal mechanism of Yangbi M 5.1 earthquake calculated by Cloud servers

    表  1  各服务商对JOPENS技术指标支持情况

    Table  1.   Comparison of technique compatibility of different facilitators

    服务商 J2EE mysql数据库 OSS存储 操作系统 memcache 专有网络
    百度 支持 支持 支持 Ubuntu/CentOS 支持 支持
    阿里 支持 支持 支持 Suse/freebsd 支持 支持
    华为 支持 支持 支持 Opensuse/Ubuntu 支持 支持
    盛大 支持 支持 支持 Ubuntu/CentOS 支持 支持
    腾讯 支持 支持 支持 Suse/freebsd 支持 支持
    亚马逊 支持 支持 支持 Suse/freebsd 支持 不支持
    微软 支持 支持 支持 Suse/freebsd 支持 支持
    下载: 导出CSV

    表  2  云服务器ECS所选用配置

    Table  2.   Configuration of ECS

    名称 区域 CPU 内存 镜像 带宽 网络类型 存储空间
    流服务器1 华南 2核 4GB Freebsd10.1 64位 10Mbps 专有网络 40GB
    流服务器2 华南 2核 4GB Opensuse13.1 64位 5Mbps 专有网络 40GB
    JBOSS服务器 华南 4核 8GB Freebsd10.1 64位 0Mbps 专有网络 40GB
    RTS服务器 华南 4核 8GB Freebsd10.1 64位 0Mbps 专有网络 40GB
    下载: 导出CSV
  • 蔡寅, 李红, 赵银刚, 2016.基于私有云计算技术的强震预警系统应用研究.计算机应用与软件, 33(5):1-3, 27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyyyrj201605001
    郭燕, 陈思颖, 石砚斌, 2015.基于可信云服务的地震信息共享平台设计.防灾科技学院学报, 17(3):78-83. http://www.cqvip.com/QK/85090A/201503/666417148.html
    高宁, 叶放, 张晓普等, 2015. 基于云计算的地震背景噪声数据处理系统. 2015中国地球科学联合学术年会论文集, 22: 18-20.
    吴永权, 黄文辉, 2010.数据处理系统软件JOPENS的架构设计与实现.地震地磁观测与研究, 31(6):59-63. https://www.wenkuxiazai.com/doc/90776b60e53a580217fcfe49.html
    张晁军, 陈会忠, 李卫东等, 2015.大数据时代对地震监测预报问题的思考.地球物理学进展, 30(4):1561-1568. doi: 10.6038/pg20150410
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  57
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-13
  • 刊出日期:  2018-03-01

目录

/

返回文章
返回