• ISSN 1673-5722
  • CN 11-5429/P

应急演练中基于G-R关系的主余型地震余震震级模拟

王青平 王辉山 肖健 林岩钊 周施文 张树君

樊晓春, 李伟, 孙君嵩, 丁烨, 吴帆, 袁慎杰. 垂向地电阻率观测装置系数的计算——以江宁地震台为例[J]. 震灾防御技术, 2020, 15(3): 651-657. doi: 10.11899/zzfy20200320
引用本文: 王青平, 王辉山, 肖健, 林岩钊, 周施文, 张树君. 应急演练中基于G-R关系的主余型地震余震震级模拟[J]. 震灾防御技术, 2018, 13(1): 187-194. doi: 10.11899/zzfy20180117
Fan Xiaochun, Li Wei, Sun Junsong, Ding Ye, Wu Fan, Yuan Shenjie. Calculation of Configuration Coefficient in the Vertical Geo-resistivity Observation——Taking the Jiangning Seismic Station as an Example[J]. Technology for Earthquake Disaster Prevention, 2020, 15(3): 651-657. doi: 10.11899/zzfy20200320
Citation: Wang Qingping, Wang Huishan, Xiao Jian, Lin Yanzhao, Zhou Shiwen, Zhang Shujun. Magnitude Simulation of Aftershocks Based on G-R Relationfor MAT Earthquake in Earthquake Emergency Response Exercise[J]. Technology for Earthquake Disaster Prevention, 2018, 13(1): 187-194. doi: 10.11899/zzfy20180117

应急演练中基于G-R关系的主余型地震余震震级模拟

doi: 10.11899/zzfy20180117
基金项目: 

地震应急青年重点 CEA_EDEM-201709

详细信息
    作者简介:

    王青平, 男, 生于1984年。博士, 高级工程师。主要从事信息发布、地震应急技术研究与应用。E-mail:77605320@qq.com

Magnitude Simulation of Aftershocks Based on G-R Relationfor MAT Earthquake in Earthquake Emergency Response Exercise

  • 摘要: 在现有的日常地震演练过程中,与应急救援密切相关的地震余震信息产品较为缺乏,直接影响发震构造的判断以及影响场修正等关键环节。本文从计算机系统提供的均匀分布随机数出发,运用反函数法模拟生成余震序列,并进行系统检验,证实该方法产生的余震序列满足G-R频次关系。模拟生成的余震震级数据既有助于增强地震应急救援演练的现实性,也有助于丰富地震应急宣传产品,提升地震部门的履职能力。
  • 地震前兆观测主要关注观测数据随时间的相对变化,装置系数误差不影响观测数据的相对变化,但不正确的装置系数可能导致地电阻率观测结果出现系统误差(王兰炜等,2014),因此,正确的装置系数有利于不同区域观测数据的对比和地震前兆数据的研究。自2009年起,河北大柏舍台,甘肃天水台、武都台、平凉台,陕西合阳台实施了井下地电阻率垂直观测试验,井孔深100—225m,供电极距60—120m,测量极距20—60m(刘君等,2015王兰炜等,2015)。上述台站地电阻率垂向观测通常为1个钻孔,供电电极和测量电极均布设于1个钻孔中,部分垂向观测的供电电极A接近地表,如天水台、武都台、合阳台的供电电极A埋深仅4—5m;部分垂向观测的供电电极A埋深为40m左右,如大柏舍台。垂向地电阻率观测中的装置系数与电流的空间分布及电极位置有关,现有垂向观测装置系数计算方法依据地下点、地表点电流源产生的电场计算得出,忽略了供电电极A的埋深。江宁台深井垂向地电阻率观测装置为在2口深井进行垂向观测的试验装置,与传统垂向地电阻率观测装置不同。本文根据地下点电流源产生的电场讨论装置系数计算方法,并比较计算方法对江宁台垂向地电阻率观测的影响。

    江宁台地处南京市江宁区禄口街道水荆墅村,地形开阔平坦,周围无大中型工矿企业,测区位于南京-湖熟断裂南西盘和方山-小丹阳断裂西盘的楔形地块上,东距茅山断裂带30km,西北距长江36km。测区内现有垂向地电阻率观测装置为在2口深井进行垂向观测的试验装置,井距5.17m,供电电极A、测量电极M分别布设在深275m的2号井内200m和275m处,供电电极B、测量电极N分别布设在深400m的1号井内400m和325m处(图 1)。该垂向观测系统采用ZD8BI型地电仪,根据《地震台站建设规范(地电台站第1部分)》(DB/T.18.1—2006)中关于地电阻率台站的技术要求,对新建垂向观测装置的场地进行高密度电法、电测深等测试。高密度电法探测和电测深报告中NW—SE和NS测线结果表明,观测区域电测深曲线具有K形特征,电性结构等效为3层(樊晓春等,2018),场地电性层参数见表 1

    图 1  江宁台垂向观测电极布极图
    Figure 1.  The diagram of electrodes deployment
    表 1  江宁台场地电性层参数
    Table 1.  The underground electrical structure of Jiangning geoelectric station
    NW—SE测线 NS测线
    层厚/m 电阻率/Ω·m 层厚/m 电阻率/Ω·m
    29.40 39.29 24.56 18.71
    220.94 143.06 203.42 274.52
    60.39 54.79
    下载: 导出CSV 
    | 显示表格

    点电流处于不完全全空间时,对点电流源位于地下和地表 2种情况进行讨论。地下点电流源产生的电场指点电流源的电流I在地下一定深度时流入地下介质中产生的电场,为不完全全空间。假设地下介质电性均匀,介质电阻率为ρ,电流I从地下A点流入(图 2),采用镜像法计算(刘昌谋等,1994刘国兴,2005),见式(1)。地表点电流源产生的电场指地表点电流源电流I流入地下介质,从无限远处流出时在介质中产生的电场,为半无限空间。假设地下介质电性均匀,介质电阻率为ρ,电流I从地表A点流入地下,电流线的分布以A为中心向周围呈辐射状,该情况为图 2的特例(王兰炜等,2014),见式(2)。

    图 2  地下点电源产生的电场示意图
    Figure 2.  The schematic diagram of the electric field generated by underground point power supply

    (1)地下点电流源产生的电场(不完全全空间)

    $$ {V_{{\rm{MN}}}} = \frac{{\rho I}}{{4{\rm{ \mathsf{ π} }}}}\left({\frac{1}{{\overline {AM} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {{A_1}N} }} - \frac{1}{{\overline {AN} }}} \right) $$ (1)

    (2)地表点电流源产生的电场(半无限空间)

    $$ {V_{{\rm{MN}}}} = \frac{{\rho I}}{{2{\rm{ \mathsf{ π} }}}}\left({\frac{1}{{\overline {AM} }} - \frac{1}{{\overline {AN} }}} \right) $$ (2)

    装置系数是地电阻率观测中特有的参数,通常用K表示,与观测装置中电极分布情况有关,表征地电阻率是视电阻率(王兰炜等,2014)。当测区区域介质电阻率均匀分布时,地电阻率ρs与介质真实的电阻率ρ数值相同。

    根据奥斯定理和镜像原理(钱家栋等,1985),假设测区为均匀介质,垂向观测中的装置系数计算方法如下:

    (1)方法Ⅰ:传统垂向观测装置系数计算方法(王兰炜等,2014

    传统方法井下垂向观测装置忽略电极A的埋深,在点电源B与地面对称的位置设镜像点B1,见图 3(a)。根据式(1)和式(2),则K为:

    图 3  江宁台垂向观测示意
    Figure 3.  The schematic diagram of vertical geo-resistivity observation
    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\left({\frac{2}{{\overline {AM} }} - \frac{2}{{\overline {AN} }}} \right) - \left({\frac{1}{{\overline {BM} }} + \frac{1}{{\overline {{B_1}M} }} - \frac{1}{{\overline {{B_1}N} }} - \frac{1}{{\overline {BN} }}} \right)}} $$ (3)

    不考虑江宁台垂向观测电极A埋深时,因江宁台垂向观测AM=BNAN=BM,则:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\frac{3}{{\overline {AM} }} - \frac{3}{{\overline {AN} }} - \frac{1}{{\overline {{B_1}M} }} + \frac{1}{{\overline {{B_1}N} }}}} $$ (4)

    (2)方法Ⅱ:采用全空间方式的装置系数计算方法(钱家栋等,1985王兰炜等,2014

    当电极埋深h远大于供电极长度AB时,为全空间,则K为地表观测装置系数的2倍,即:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\frac{1}{{\overline {AM} }} - \frac{1}{{\overline {AN} }} - \frac{1}{{\overline {BM} }} + \frac{1}{{\overline {BN} }}}} $$ (5)

    (3)方法Ⅲ:采用不完全全空间方式的装置系数计算方法

    江宁台垂向观测的电极AMNB分别位于埋深200m、275m、325m、400m处,应按地下点电源产生的电场模型计算(不完全全空间),如图 3(b)所示。在点电源AB与地面对称的位置设镜像点A1B1,忽略1号井和2号井的水平距离l,根据式(1),则供电电流I(+I和-I)在MN间产生的电位差为:

    $$ {V_{MN}} = \frac{{\rho I}}{{4{\rm{ \mathsf{ π} }}}}\left[ {\left({\frac{1}{{\overline {AM} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {{A_1}N} }} - \frac{1}{{\overline {AN} }}} \right) - \left({\frac{1}{{\overline {BM} }} + \frac{1}{{\overline {{B_1}M} }} - \frac{1}{{\overline {{B_1}N} }} - \frac{1}{{\overline {BN} }}} \right)} \right] $$ (6)

    K为:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\left({\frac{1}{{\overline {AM} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {AN} }} - \frac{1}{{\overline {{A_1}N} }}} \right) - \left({\frac{1}{{\overline {BM} }} + \frac{1}{{\overline {{B_1}M} }} - \frac{1}{{\overline {BN} }} - \frac{1}{{\overline {{B_1}N} }}} \right)}} $$ (7)

    因江宁台垂向观测AM=BNAN=BM,则:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\frac{2}{{\overline {AM} }} - \frac{2}{{\overline {AN} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {{A_1}N} }} - \frac{1}{{\overline {{B_1}M} }} + \frac{1}{{\overline {{B_1}N} }}}} $$ (8)

    (4)方法Ⅳ:采用不完全全空间方式(考虑井距l)的装置系数计算方法

    按照地下点电源产生电场的模型计算(不完全全空间),在点电源AB与地面对称的位置设镜像点A1B1h1h2h3表示供电电极A、BM的电极埋深,井距l表示2口井孔水平距离(图 3(c)),则:

    $$ \overline {AM} = {h_3} - {h_1} $$ (9)
    $$ \overline {AN} = \sqrt {{l^2} + {{({h_2} - {h_3})}^2}} $$ (10)
    $$ \overline {{A_1}M} = {h_1} + {h_3} $$ (11)
    $$ \overline {{A_1}N} = \sqrt {{l^2} + {{({h_2} + 2{h_1} - {h_3})}^2}} $$ (12)
    $$ \overline {{B_1}M} = \sqrt {{l^2} + {{({h_2} + {h_3})}^2}} $$ (13)
    $$ \overline {{B_1}N} = 2{h_2} - {h_3} + {h_1} $$ (14)

    将式(9)至式(14)代入式(8),则K变为:

    $$ K = \frac{{4\pi }}{{\frac{2}{{{h_3} - {h_1}}} - \frac{2}{{\sqrt {{l^2} + {{({h_2} - {h_3})}^2}} }} + \frac{1}{{{h_1} + {h_3}}} - \frac{1}{{\sqrt {{l^2} + {{({h_2} + 2{h_1} - {h_3})}^2}} }} - \frac{1}{{\sqrt {{l^2} + {{({h_2} + {h_3})}^2}} }} + \frac{1}{{2{h_2} - {h_3} + {h_1}}}}} $$ (15)

    采用方法Ⅰ—Ⅳ分别计算江宁台垂向地电阻率观测的装置系数K,结果见表 2。考虑江宁台垂向地电阻率观测的电极布设不同于传统垂向观测装置,所有电极埋深均在200m以上,本文认为应以方法Ⅳ为参考值,采用式(16)计算不同装置系数计算方法的相对误差。方法Ⅰ、Ⅱ、Ⅲ相对误差分别为-32.01%、1.37%、0.43%,可知方法Ⅰ不适用于江宁台垂向地电阻率观测,该计算方法通常仅适用于供电电极A埋深小于5m的垂向观测,如天水台、合阳台。方法Ⅱ相对误差较小,江宁台垂向观测于2018年4月25日至2018年11月22日曾采用该方法。考虑仅当电极埋深远大于供电极距时称为全空间,而江宁台垂向装置最小电极埋深仅与供电极距相当,因此,方法Ⅱ同样不适用于江宁台垂向观测。除江宁台外,大部分台站观测装置电极埋深明显小于供电极距,均不宜采用方法Ⅱ。方法Ⅲ相对误差最小,江宁台垂向地电阻率观测于2018年11月23日至2019年10月30日曾采用该方法,2018年11月出现的台阶是由调整装置系数导致的(图 4)。由于江宁台垂向地电阻率观测为多孔观测,须考虑井距才能准确计算其装置系数,因而最终采用方法Ⅳ进行计算。

    $$ \sigma = \frac{{k_{方法}} - {k_{方法Ⅳ}}}{{{k_{方法Ⅳ}}}} $$ (16)
    表 2  江宁台垂向观测的装置系数
    Table 2.  The configuration coefficient of vertical geo-resistivity observation in Jiangning earthquake station
    计算方法 AM/m AN/m B1M/m B1N/m A1M/m A1N/m 装置系数K
    75.000 125.000 675.000 725.000 790.000
    75.000 125.000 1178.000
    75.000 125.000 675.000 725.000 475.000 525.000 1167.000
    75.000 125.374 675.020 725.000 475.000 525.292 1162.000
    下载: 导出CSV 
    | 显示表格
    图 4  江宁台垂向观测整点值曲线
    Figure 4.  The hourly observational value curves of vertical geo-resistivity observation at Jiangning Seismic Station

    本文以江宁台垂向地电阻率观测为例,提出2种以不完全全空间方式计算的新方法,并与现有垂向观测装置计算方法进行比较。研究结果表明,方法Ⅳ最符合江宁台垂向地电阻率观测装置。考虑方法Ⅳ中部分参数存在小数部分,认为保留小数点后三位能满足装置系数精度要求。方法Ⅳ除适用于2口井垂向观测装置外,同样适用于忽略井距时供电电极A埋深超过5m的单口井垂向观测装置。

    致谢: 衷心感谢中国地震局地壳应力研究所王兰炜研究员对本文提出的建议和意见。
  • 图  1  随机数相关性检验

    Figure  1.  Correlation test of random numbers

    图  2  随机数频次分布图

    Figure  2.  Frequency distribution of random numbers

    图  3  余震震级分布图

    Figure  3.  Magnitude distribution of aftershocks

    图  4  余震概率密度函数和累积分布函数

    Figure  4.  PDF and CDF of aftershocks

    图  5  拟合的余震频次分布图

    Figure  5.  Frequency distribution of fitted aftershocks

    表  1  模拟的余震频次及拟合频次对比表

    Table  1.   Comparison of simulated with fitted frequency of aftershocks

    震级M 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6
    模拟频次 48964 25291 12710 6405 3303 1615 859 428 229 105 58 33
    拟合频次 48261 24662 12602 6440 3291 1682 859 439 224 115 59 30
    相对误差 1.4% 2.5% 0.8% 0.5% 0.4% 4.1% 0 2.6% 2.2% 9.5% 1.7% 9.1%
    下载: 导出CSV

    表  2  不同b值的拟合效果

    Table  2.   The fitting results of different b value

    初始b 0.5555 0.6180 0.7123 0.8234
    拟合b 0.5560 0.6209 0.7084 0.8174
    b值相对误差 0.09% 0.47% 0.55% 0.73%
    相关系数 0.9999 0.9999 0.9994 0.9991
    下载: 导出CSV

    表  3  不同随机数种子的拟合效果

    Table  3.   The fitting results of different seeds

    随机数种子 12322 350003 1234567 19491001 20080808
    拟合b 0.7214 0.7162 0.7364 0.7379 0.7278
    b值相对误差 1.18% 1.89% 0.88% 1.08% 0.30%
    相关系数 0.9991 0.9990 0.9994 0.9995 0.9999
    下载: 导出CSV
  • 傅征祥, 吕晓健, 邵辉成等, 2008.中国大陆及其分区余震序列b值的统计特征分析.地震, 28(3):1-7. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizn200803002&dbname=CJFD&dbcode=CJFQ
    蒋海昆, 曲延军, 李永莉等, 2006.中国大陆中强地震余震序列的部分统计特征.地球物理学报, 49(4):1110-1117. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwx200604023&dbname=CJFD&dbcode=CJFQ
    刘善琪, 李永兵, 田会全等, 2013.影响b值计算误差的Monte Carlo实验研究.地震, 33(4):135-144. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizn201304016&dbname=CJFD&dbcode=CJFQ
    马宏生, 刘杰, 张国民等, 2005.基于G-R关系的应变积累释放模型研究中国大陆强震的分区活动.地震学报, 27(4):355-366. http://d.wanfangdata.com.cn/Periodical_dizhen200504001.aspx
    任雪梅, 高孟潭, 刘爱文等, 2009.1900年以来我国西南地区强余震统计特征.震灾防御技术, 4(2):200-208. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20090209&journal_id=zzfyjs
    王菊, 王和明, 徐海龙等, 2015.任意分布随机数的FPGA实现.火力与指挥控制, 40(4):173-175, 180. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hlyz201504041&dbname=CJFD&dbcode=CJFQ
    王伟锞, 李志强, 李晓丽, 2011.利用余震法快速判定宏观震中的研究.震灾防御技术, 6(1):36-48. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20110104&journal_id=zzfyjs
    吴开统, 焦远碧, 吕培苓等, 1990.地震序列概论.北京:北京大学出版社.
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2005.GB/T 18207.2-2005防震减灾术语第2部分:专业术语.北京:中国标准出版社.
    周蕙兰, 房桂荣, 章爱娣等, 1982.余震序列的持续时间.地震学报, 4(1):45-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxb198201004&dbname=CJFD&dbcode=CJFQ
    Bath M., 1965. Lateral in homogeneities of the upper mantle. Tectonophysics, 2(6):483-514. doi: 10.1016/0040-1951(65)90003-X
    Eob B. C., Soo S. J., 1992. Monte-Carlo simulation of earthquake sequence in the time and magnitude space. The Journal of Engineering Geology, 2(2):147-154. http://www.dbpia.co.kr/Article/NODE00766673
    Gutenberg B., Richter C. F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4):185-188.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  77
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 刊出日期:  2018-03-01

目录

/

返回文章
返回