• ISSN 1673-5722
  • CN 11-5429/P

北京平原地区VS30估算模型适用性研究

江志杰 彭艳菊 方怡 吕悦军 修立伟 黄帅

江志杰, 彭艳菊, 方怡, 吕悦军, 修立伟, 黄帅. 北京平原地区VS30估算模型适用性研究[J]. 震灾防御技术, 2018, 13(1): 75-86. doi: 10.11899/zzfy20180107
引用本文: 江志杰, 彭艳菊, 方怡, 吕悦军, 修立伟, 黄帅. 北京平原地区VS30估算模型适用性研究[J]. 震灾防御技术, 2018, 13(1): 75-86. doi: 10.11899/zzfy20180107
Jiang Zhijie, Peng Yanju, Fang Yi, Lv Yuejun, Xiu Liwei, Huang Shuai. Applicability of VS30 Estimation Models for the Beijing Plain Area[J]. Technology for Earthquake Disaster Prevention, 2018, 13(1): 75-86. doi: 10.11899/zzfy20180107
Citation: Jiang Zhijie, Peng Yanju, Fang Yi, Lv Yuejun, Xiu Liwei, Huang Shuai. Applicability of VS30 Estimation Models for the Beijing Plain Area[J]. Technology for Earthquake Disaster Prevention, 2018, 13(1): 75-86. doi: 10.11899/zzfy20180107

北京平原地区VS30估算模型适用性研究

doi: 10.11899/zzfy20180107
基金项目: 

中央级公益性科研院所基本科研业务专项 ZD2017-28

北京市自然科学基金项目 8174078

北京市优秀人才项目 2015000057592G270

详细信息
    作者简介:

    江志杰, 女, 生于1991年。硕士研究生。主要研究方向:工程地震。E-mail:m15201530155@163.com

Applicability of VS30 Estimation Models for the Beijing Plain Area

  • 摘要: 本文使用基于钻孔测井数据的3类模型,即常速度外推模型、速度梯度模型、双深度参数外推模型,通过对北京地区460个深度超过30m的钻孔剪切波速资料进行分析,详细探究了VS30估算模型在本研究区的适用性。研究结果表明双深度参数外推模型在估算VS30上准确度很高,其不需要大量的数据进行回归分析,且不具有区域独立性,可以为全球包括北京地区场地类别划分提供依据,进而在震害快速评估中用于确定场地影响,是一种值得推广的估算模型。
  • 图  1  北京地区钻孔位置分布图

    Figure  1.  patial distribution of boreholes in the Beijing area

    图  2  不同深度终孔分布图

    Figure  2.  Total numbers of boreholes at different depth

    图  3  VS20VS30的对应关系(虚线代表 1: 1分割线)

    Figure  3.  Relation of VS20 and VS30 (The dashed lines represent the 1:1 curve)

    图  4  不同深度下常速度模型(BCV)剪切波速估算值VSE30和实测值VS30对比图

    Figure  4.  Comparison between the estimate VSE30 and the measured VS30 in BCV model at different depths

    图  5  不同深度下北京平原及Boore(2004)加州和Boore等(2011)日本地区数据回归分析图

    Figure  5.  Regression analysis based on the data of Beijing plain area, California (Boore, 2004) and Japan (Boore et al., 2011) at different depths

    图  6  速度梯度模型线性回归分析(左图)及Wang等(2015)模型(中及右图)得出的VS30VSE30对比图

    Figure  6.  Correlations between VS30 and VSE30 using method of velocity gradient linear regression model (left column) and Wang et al. (2015) method (middle and right column), respectively

    表  1  BCV法VSE30VS30的相关系数及残差标准差

    Table  1.   List of parameters (and defective standard deviation r and σRES) of VSE30 and VS30 for BCV

    深度/m r σRES
    6 0.830 0.104
    7 0.860 0.089
    8 0.877 0.080
    9 0.901 0.069
    10 0.903 0.064
    11 0.920 0.053
    12 0.917 0.046
    13 0.924 0.039
    14 0.931 0.035
    15 0.945 0.029
    16 0.950 0.027
    17 0.957 0.025
    18 0.963 0.022
    19 0.972 0.020
    20 0.978 0.018
    21 0.982 0.016
    22 0.986 0.014
    23 0.991 0.011
    24 0.994 0.009
    25 0.996 0.006
    26 0.998 0.005
    27 0.999 0.003
    28 1.000 0.002
    29 1.000 0.001
    下载: 导出CSV

    表  2  基于公式(4)的线性回归模型的回归系数

    Table  2.   List of coefficients a0, a1, r and σRES of equation (4) based on Linear Regression Model

    深度/m a0 a1 r σRES
    5 0.847 0.696 0.728 0.045
    6 0.680 0.766 0.776 0.041
    7 0.562 0.814 0.812 0.038
    8 0.478 0.847 0.840 0.035
    9 0.399 0.878 0.867 0.033
    10 0.340 0.901 0.886 0.030
    11 0.290 0.919 0.904 0.028
    12 0.242 0.937 0.919 0.026
    13 0.196 0.954 0.931 0.024
    14 0.161 0.966 0.943 0.022
    15 0.133 0.975 0.953 0.020
    16 0.118 0.978 0.960 0.018
    17 0.108 0.980 0.967 0.017
    18 0.100 0.981 0.973 0.015
    19 0.089 0.983 0.977 0.014
    20 0.074 0.988 0.982 0.012
    21 0.060 0.991 0.985 0.011
    22 0.050 0.994 0.988 0.010
    23 0.042 0.995 0.991 0.009
    24 0.034 0.997 0.993 0.008
    25 0.028 0.998 0.995 0.006
    26 0.023 0.998 0.997 0.005
    27 0.017 0.998 0.998 0.004
    28 0.011 0.999 0.999 0.003
    29 0.005 1.000 1.000 0.001
    下载: 导出CSV

    表  3  基于公式(5)的二次回归模型的回归系数

    Table  3.   List of coefficients b0, b1, b2, r and σRES of equation (5) based on Quadratic Regression Model

    深度/m b0 b1 b2 r σRES
    5 3.487 -1.672 0.530 0.734 0.044
    6 4.280 -2.442 0.714 0.783 0.041
    7 4.603 -2.763 0.791 0.820 0.037
    8 4.344 -2.553 0.747 0.846 0.035
    9 3.876 -2.162 0.664 0.871 0.032
    10 3.357 -1.724 0.570 0.890 0.030
    11 2.850 -1.297 0.479 0.906 0.028
    12 2.403 -0.926 0.401 0.920 0.026
    13 2.079 -0.663 0.347 0.932 0.024
    14 1.868 -0.496 0.312 0.943 0.022
    15 1.768 -0.420 0.297 0.953 0.020
    16 1.682 -0.352 0.283 0.961 0.018
    17 1.567 -0.258 0.262 0.967 0.017
    18 1.451 -0.162 0.241 0.973 0.015
    19 1.246 0.007 0.206 0.978 0.014
    20 0.949 0.251 0.155 0.982 0.012
    21 0.670 0.480 0.107 0.985 0.011
    22 0.477 0.636 0.075 0.988 0.010
    23 0.338 0.747 0.052 0.991 0.009
    24 0.191 0.866 0.027 0.993 0.008
    25 0.081 0.953 0.009 0.995 0.006
    26 -0.013 1.027 -0.006 0.997 0.005
    27 -0.031 1.038 -0.008 0.998 0.004
    28 -0.032 1.035 -0.007 0.999 0.003
    29 -0.003 1.006 -0.001 1.000 0.001
    下载: 导出CSV

    表  4  Wang等(2015)计算的VSE30VS30相关性及残差标准差

    Table  4.   List of coefficients and defective standard deviation r and σRES of VSE30 and VS30 from Wang et al. (2015)

    (z1z2) r σRES
    (5,10) 0.876 0.052
    (5,15) 0.947 0.03
    (5,20) 0.978 0.018
    (5,25) 0.995 0.009
    (10,15) 0.943 0.025
    (10,20) 0.977 0.016
    (10,25) 0.995 0.008
    (15,20) 0.975 0.016
    (15,25) 0.995 0.007
    (20,25) 0.994 0.008
    下载: 导出CSV
  • 薄景山, 李秀领, 李山有, 2003a. 场地条件对地震动影响研究的若干进展. 世界地震工程, 19(2): 11-15. http://d.wanfangdata.com.cn/Periodical_sjdzgc200302002.aspx
    薄景山, 李秀领, 刘德东等, 2003b.土层结构对反应谱特征周期的影响.地震工程与工程振动, 23(5):42-45. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dzgcygczd200305007
    陈鲲, 俞言祥, 高孟潭, 2010.考虑场地效应的ShakeMap系统研究.中国地震, 26(1):92-102. http://www.cnki.com.cn/Article/CJFDTotal-ZGZD201001010.htm
    胡聿贤, 孙平善, 章在墉等, 1980.场地条件对震害和地震动的影响.地震工程与工程振动, (试刊):34-41. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dggc198000005&dbname=CJFD&dbcode=CJFQ
    黄雅虹, 吕悦军, 彭艳菊, 2009.国内外不同抗震设计规范中场地分类方法的内在关系研究.震灾防御技术, 4(1):80-90. doi: 10.11899/zzfy20090108
    李小军, 彭青, 2001.不同类别场地地震动参数的计算分析.地震工程与工程振动, 21(1):29-36. http://www.cqvip.com/Main/Detail.aspx?id=4983229
    李小军, 2006.工程场地地震安全性评价工作及相关技术问题.震灾防御技术, 1(1):15-24. doi: 10.11899/zzfy20060103
    吕悦军, 彭艳菊, 兰景岩等, 2008.场地条件对地震动参数影响的关键问题.震灾防御技术, 3(2):126-135. doi: 10.11899/zzfy20080203
    彭艳菊, 吕悦军, 黄雅虹等, 2009.工程地震中的场地分类方法及适用性评述.地震地质, 31(2):349-362. http://www.docin.com/p-726119991.html
    喻畑, 李小军, 2015.四川、甘肃地区VS30经验估计研究.地震工程学报, 37(2):525-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201502042
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB50011-2010建筑抗震设计规范. 北京: 中国建筑工业出版社.
    Abrahamson N., Silva W., 2008. Summary of the abrahamson & silva NGA ground-motion relations. Earthquake Spectra, 24(1):67-98. doi: 10.1193/1.2924360
    American Society of Civil Engineers (ASCE), 2010. Standards ASCE/SEI 7-10 Minimum design loads for buildings and other structures. Reston, Virginia:ASCE, 650.
    Boore D. M., 2004. Estimating VS (30) (or NEHRP site classes) from shallow velocity models (Depth < 30 m). Bulletin of the Seismological Society of America, 94(2):591-597. doi: 10.1785/0120030105
    Boore D. M., Atkinson G. M., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-Damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1):99-138. doi: 10.1193/1.2830434
    Boore D. M., Thompson E. M., Cadet H., 2011. Regional correlations of VS30 and Velocities averaged over depths less than and greater than 30 meters. Bulletin of the Seismological Society of America, 101(6):3046-3059. doi: 10.1785/0120110071
    Borcherdt R. D., 1994. Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra, 10(4):617-653. doi: 10.1193/1.1585791
    Building Seismic Safety Council, 2003. Recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions. Report No. FEMA-450, Federal Emergency Management Agency, Washington, D. C., 303pp.
    Campbell K. W., Bozorgnia Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1):139-171. doi: 10.1193/1.2857546
    Chiou B. S. J., Youngs R. R., 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1):173-215. doi: 10.1193/1.2894832
    Eurocode 8, 2004. Design of structures for earthquake resistance, part 1: General rules, seismic actions and rules for buildings, EN 1998-1, European Committee for Standardization (CEN), http://www.cen.eu/cenorm/homepage.htm (last accessed July 2011).
    Idriss I. M., 2008. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24(1):217-242. doi: 10.1193/1.2924362
    Kuo C. H., Wen K. L., Hsieh H. H., et al., 2011. Evaluating empirical regression equations for VS and estimating VS30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31(3):431-439. doi: 10.1016/j.soildyn.2010.09.012
    Wald D. J., Allen T. I., 2007. Topographic Slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5):1379-1395. doi: 10.1785/0120060267
    Wang H. Y., Wang S. Y., 2015. A new method for estimating VS(30) from a shallow shear-wave velocity profile (depth < 30 m). Bulletin of the Seismological Society of America, 105(3):1359-1370. doi: 10.1785/0120140103
    Xie J. J., Zimmaro P., Li X. J., et al., 2016. VS30 empirical prediction relationships based on a new soil-profile database for the Beijing plain area, China. Bulletin of the Seismological Society of America, 106(6):2843-2854. doi: 10.1785/0120160053
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  63
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 刊出日期:  2018-03-01

目录

    /

    返回文章
    返回