• ISSN 1673-5722
  • CN 11-5429/P

应用非线性高阶谐波衰减和尾波干涉监测高温作用后水泥制品的损伤演化

张尧 马强 肖武军

张尧, 马强, 肖武军. 应用非线性高阶谐波衰减和尾波干涉监测高温作用后水泥制品的损伤演化[J]. 震灾防御技术, 2018, 13(1): 52-64. doi: 10.11899/zzfy20180105
引用本文: 张尧, 马强, 肖武军. 应用非线性高阶谐波衰减和尾波干涉监测高温作用后水泥制品的损伤演化[J]. 震灾防御技术, 2018, 13(1): 52-64. doi: 10.11899/zzfy20180105
Zhang Yao, Ma Qiang, Xiao Wujun. Application Nonlinear High Order Harmonics and Coda Wave Interferometry on Monitoring Damage Evolution of Cement Specimens Subject to Elevated Temperature[J]. Technology for Earthquake Disaster Prevention, 2018, 13(1): 52-64. doi: 10.11899/zzfy20180105
Citation: Zhang Yao, Ma Qiang, Xiao Wujun. Application Nonlinear High Order Harmonics and Coda Wave Interferometry on Monitoring Damage Evolution of Cement Specimens Subject to Elevated Temperature[J]. Technology for Earthquake Disaster Prevention, 2018, 13(1): 52-64. doi: 10.11899/zzfy20180105

应用非线性高阶谐波衰减和尾波干涉监测高温作用后水泥制品的损伤演化

doi: 10.11899/zzfy20180105
详细信息
    作者简介:

    张尧, 男, 生于1986年。工程师。主要从事重大项目管理, 抗震性能模拟分析等研究。E-mail:zhangyao@seis.ac.cn

Application Nonlinear High Order Harmonics and Coda Wave Interferometry on Monitoring Damage Evolution of Cement Specimens Subject to Elevated Temperature

  • 摘要: 非线性高阶谐波和尾波波速变化均能够反映水泥材料内部微结构的应力变化。利用高阶谐波和尾波干涉实验测量系统,对引入高温作用后的3类不同粒径共6块水泥试样进行单轴加载的损伤演化实验,并与无高温作用的完整试样的实验结果进行对比。结果表明,从初始状态到25%抗压强度的过程中,高温作用后的试样的谐波幅值和尾波波速变化出现明显增强的现象(谐波幅值最大增幅约20%),而无高温作用的完整试样的谐波幅值和尾波波速变化较为平稳(谐波幅值最大增幅约5%);在达到65%抗压强度的过程中,高温作用后的试样的谐波幅值和尾波波速变化急剧增大(谐波幅值最大增幅约100%),且粒径较大的试样的增幅高于粒径较小的试样,而无高温作用的完整试样的谐波幅值和尾波波速变化的增幅较小(谐波幅值最大增幅约10%);当抗压强度超过75%以后,高温作用后的试样的谐波幅值和尾波波速变化急剧衰减(谐波幅值最大衰减幅度约140%),而无高温作用的完整试样的谐波幅值和尾波波速的最大衰减幅值在40%以内。基于以上观测结果对高温作用后水泥制品损伤演化的物理机制以及这两类监测方法的适用性进行了讨论。
  • 图  1  穿过1#水泥试样的单频脉冲时域信号

    Figure  1.  Time domain signal through cement specimen 1#

    图  2  1#试样原始信号和使用脉冲反转技术得到的二次谐波频谱图

    Figure  2.  Fourier spectra of original signal and second harmonic signals extracted by pulse-inversion technique of cement specimen 1#

    图  3  4#试样在不同抗压强度下的尾波波形

    Figure  3.  Illustration for coda waves of sample 4# under different percentage of failure force

    图  4  实验装置及工作流程示意图

    Figure  4.  Illustration of experiment system and its workflow

    图  5  1#和4#试样随抗压强度的基频(a)与二次谐波(b)的衰减变化

    Figure  5.  Attenuation in amplitude of fundamental (a) and second order(b) harmonics of specimen 1# and 4# as a function of percentage of failure force

    图  6  2#和5#试样随抗压强度的基频(a)与二次谐波(b)的衰减变化

    Figure  6.  Attenuation in amplitude of fundamental (a) and second order (b) harmonics of specimen 2# and 5# as a function of percentage of failure force

    图  7  3#和6#试样随抗压强度的基频(a)与二次谐波(b)的衰减变化

    Figure  7.  Attenuation in amplitude of fundamental (a) and second order (b) harmonics of specimen 3# and 6# as a function of percentage of failure force

    图  8  1#和4#试样随抗压强度的尾波波速变化(a)与P波波速(b)

    Figure  8.  Velocity variation of tail wave and P wave speed of specimen 1# and 4# as a function of percentage of failure force

    图  9  2#和5#试样随抗压强度的尾波波速变化(a)与P波波速(b)

    Figure  9.  Velocity variation of tail wave and P wave speed of specimen 2# and 5# as a function of percentage of failure force

    图  10  3#和6#试样随抗压强度的尾波波速变化(a)与P波波速(b)

    Figure  10.  Velocity variation of tail wave and P wave speed of specimen 3# and 6# as a function of percentage of failure force

    表  1  水泥试样的物理参数

    Table  1.   Physical parameters of cement specimens

    试样编号 描述状态 尺寸/cm 水:水泥:骨料颗粒(质量) 粒径/cm 传播时间/µs 波速/m·s-1
    1 完整状态 4×4×8 0.4:1:1 0.1—0.2 9.94 4024
    2 完整状态 4×4×8 0.4:1:1 0.3—0.6 9.69 4124
    3 完整状态 4×4×8 0.4:1:1 0.8—1.2 9.46 4224
    4 高温加热 4×4×8 0.4:1:1 0.1—0.2 10.84 3687
    5 高温加热 4×4×8 0.4:1:1 0.3—0.6 10.65 3753
    6 高温加热 4×4×8 0.4:1:1 0.8—1.2 10.30 3883
    下载: 导出CSV
  • 陈小佳, 沈成武, Jacobs L. L., 2007.一种基于非线性超声谐波幅值比的微裂缝探测方法.武汉大学学报(工学版), 40(6):61-65. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_whsldldxxb200706013
    宋丽莉, 葛洪魁, 郭志伟等, 2012a.利用多次散射波监测介质性质变化的试验研究.岩石力学与工程学报, 31(4):713-722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201204009
    宋丽莉, 葛洪魁, 梁天成等, 2012b.小应力扰动下岩石弹性波速变化的波形检测.中国石油大学学报(自然科学版), 36(4):60-65. http://d.wanfangdata.com.cn/Periodical_sydxxb201204011.aspx
    谢凡, 葛洪魁, 郭志伟, 2013.利用超声二次谐波测试水泥试样的非线性系数.机械工程学报, 49(14):9-15. http://d.wanfangdata.com.cn/Periodical_jxgcxb201314002.aspx
    周正干, 刘斯明, 2011.非线性无损检测技术的研究、应用和发展.机械工程学报, 47(8):2-11. https://www.wenkuxiazai.com/doc/3c3488975ef7ba0d4b733b1a-4.html
    朱金林, 刘晓宙, 周到等, 2009.声波在有裂纹的固体中的非经典非线性传播.声学学报, 34(3):234-241. http://xueshu.baidu.com/s?wd=paperuri%3A%28590f97add7fce8ab1465369066629b88%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dxiba200903009%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=17138570087307439368
    Bruneau M., Potel C., 2009. Materials and acoustics handbook. Hoboken, NJ, USA:Wiley Online Library.
    Brunet T., Jia X. P., Johnson P. A., 2008. Transitional nonlinear elastic behaviour in dense granular media. Geophysical Research Letters, 35(19):L19308. doi: 10.1029/2008GL035264
    Clarke D., Zaccarelli L., Shapiro N. M., et al., 2011. Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 186(2):867-882. doi: 10.1111/j.1365-246X.2011.05074.x
    Frouin J., Sathish S., Matikas T. E., et al., 1999. Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V. Journal of Materials Research, 14(4):1295-1298. doi: 10.1557/JMR.1999.0176
    Hadziioannou C., Larose E., Coutant O., et al., 2009. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation:laboratory experiments. The Journal of the Acoustical Society of America, 125(6):3688-3695. doi: 10.1121/1.3125345
    Jhang K. Y., 2009. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material:a review. International Journal of Precision Engineering and Manufacturing, 10(1):123-135. doi: 10.1007/s12541-009-0019-y
    Jia X. P., Laurent J., Khidas Y., et al., 2009. Sound scattering in dense granular media. Chinese Science Bulletin, 54(23):4327-4336. doi: 10.1007/s11434-009-0609-1
    Kim J. Y., 2006. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. The Journal of the Acoustical Society of America, 120(3):1266-1273. doi: 10.1121/1.2221557
    Larose E., Hall S., 2009. Monitoring stress related velocity variation in concrete with a 2·10-5 relative resolution using diffuse ultrasound. The Journal of the Acoustical Society of America, 125(4):1853-1856. doi: 10.1121/1.3079771
    Mehta P. K., 1986. Concrete:Structure, properties and materials. Englewood Cliffs, NJ, USA:Prentice-Hall.
    Payan C., Garnier V., Moysan J., et al., 2009. Determination of third order elastic constants in a complex solid applying coda wave interferometry. Applied Physics Letters, 94(1):011904. doi: 10.1063/1.3064129
    Schurr D. P., Kim J. Y., Sabra K. G., et al., 2011. Monitoring damage in concrete using diffuse ultrasonic coda wave interferometry. AIP Conference Proceedings, 1335(1):1283-1290. doi: 10.1063/1.3592081
    Shah A. A., Ribakov Y., 2012. Damage detection in concrete using nonlinear signal attenuation ultrasound. Latin American Journal of Solids and Structures, 9(6):713-730. http://www.lajss.org/index.php/LAJSS/login?source=%2Findex.php%2FLAJSS%2Farticle%2Fview%2F407%2F973
    Shah A. A., Ribakov Y., Zhang C., 2013. Efficiency and sensitivity of linear and non-linear ultrasonics to identifying micro and macro-scale defects in concrete. Materials & Design, 50:905-916. https://www.sciencedirect.com/science/article/pii/S0261306913002872
    Snieder R., Grêt A., Douma H., et al., 2002. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563):2253-2255. doi: 10.1126/science.1070015
    Tournat V., Gusev V. E., 2010. Acoustics of unconsolidated "model" granular media:an overview of recent results and several open problems. Acta Acustica united with Acustica, 96(2):208-224. doi: 10.3813/AAA.918271
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 刊出日期:  2018-03-01

目录

    /

    返回文章
    返回