• ISSN 1673-5722
  • CN 11-5429/P

层状介质对破裂过程的影响

齐梦雪 周红

齐梦雪, 周红. 层状介质对破裂过程的影响[J]. 震灾防御技术, 2017, 12(3): 599-612. doi: 10.11899/zzfy20170316
引用本文: 齐梦雪, 周红. 层状介质对破裂过程的影响[J]. 震灾防御技术, 2017, 12(3): 599-612. doi: 10.11899/zzfy20170316
Qi Mengxue, Zhou Hong. The Effect of Layered Medium on Rupture Process[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 599-612. doi: 10.11899/zzfy20170316
Citation: Qi Mengxue, Zhou Hong. The Effect of Layered Medium on Rupture Process[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 599-612. doi: 10.11899/zzfy20170316

层状介质对破裂过程的影响

doi: 10.11899/zzfy20170316
基金项目: 

地震行业科研专项 20140814

基本业务专项基金 DQIB14C02

潜在强震区地震地质灾害调查与风险区划 12120114035501

详细信息
    作者简介:

    齐梦雪, 女, 生于1992年。硕士。研究方向为谱元法数值模拟。E-mail:qimengxue@cea-igp.ac.cn

    通讯作者:

    周红, 女, 生于1969年。研究员。主要从事强地面运动及地震破裂过程模拟。E-mail:zhouhong@cea-igp.ac.cn

The Effect of Layered Medium on Rupture Process

  • 摘要: 震源动力学中破裂产生的地震动在层状介质中的传播模拟,是地震学以及地震工程学研究的前沿课题之一。本文通过建立精确的三维模型,选取具备灵活网格、高精度高效率计算性能的谱元法,利用有效抑制伪震荡的时间域离散方法——加权速度Newmark方法以及多次透射人工边界条件,进行了SCEC/USGS基准项目中TPV5模型的地震破裂过程模拟,得到基于层状介质模型和均匀介质模型(后者采用相同破裂模型)的埋深2km的震源参数结果。将二者进行对比,并具体分析破裂面位错、地震矩、破裂传播时间、上升时间和地表位移,发现层状介质对破裂过程的传播影响较为明显:① 层状介质的存在整体增加了破裂面上的位错,在层状介质模型下计算得到的地震矩约是均匀介质模型结果的1.3倍,因此认为层状介质增强了地震破裂过程中的能量释放;② 层状介质的存在使得破裂传播至地表的速度减慢,并缩短了地表各点的上升时间,增强了地表的地震动响应;③ 层状介质对于地表位移有着明显的增加作用,同时协同破裂面上的初始应力异常区域对位移峰值中心的改变有显著影响。④ 介质分异面附近地震动强烈。对结果进行整理后发现,在具有地下层状介质的地区要充分考虑层状介质产生的场地效应,否则可能会低估该地区的地震危险性。
  • 图  1  断层三维模型

    Figure  1.  The three-dimension fault model

    图  2  均匀介质模型

    (a)与埋深2km的层状介质模型(b)中断层面上位错等值线分布对比图

    Figure  2.  The contour map of dislocation on the fault plane in the uniform medium (a) and in the layered medium (b)

    图  3  深度为2km的异常带位错放大图

    Figure  3.  The magnification effect of anomaly zone at the depth of 2km

    图  4  均匀介质模型

    (a)与埋深为2km的层状介质模型(b)中破裂传播时间等值线对比图

    Figure  4.  The contour map of wave propagation time in the uniform medium (a) and in the layered medium (b)

    图  5  均匀介质模型

    (a)与埋深为2km厚的层状介质模型(b)的上升时间等值线对比图

    Figure  5.  The contour map of rising time in the uniform medium (a) and in the layered medium (b)

    图  6  地表水平向位移峰值分布对比

    (a)均匀介质模型,(b)层状介质模型

    Figure  6.  The contour map of surface peak displacement in the uniform medium (a) and in the layered medium (b)

  • 白玉柱, 徐杰, 周本刚, 2009.2008年汶川8.0级地震地表垂直和水平位移场模拟计算分析.震灾防御技术, 4(3):256-265. doi: 10.11899/zzfy20090302
    陈立春, 王虎, 冉勇康等, 2010.玉树MS 7.1级地震地表破裂与历史大地震.科学通报, 55(13):1200-1205. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201013003.htm
    杜晨晓, 谢富仁, 史保平, 2008.隐伏和出露地表断层近断层地表运动特征的研究进展.震灾防御技术, 3(2):172-181. doi: 10.11899/zzfy20080208
    李光品, 徐果明, 高尔根等, 2000.中国东部地壳、上地幔横波品质因子的三维层析成像.地震学报, 22(1):73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200001009.htm
    李孝波, 薄景山, 齐文浩等, 2014.地震动模拟中的谱元法.地球物理学进展, 29(5):2029-2039. doi: 10.6038/pg20140506
    刘成利, 郑勇, 葛粲等, 2013.2013年芦山7.0级地震的动态破裂过程.中国科学:地球科学, 43(6):1020-1026. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm
    刘启方, 2005. 基于运动学和动力学震源模型的近断层地震动研究. 哈尔滨: 中国地震局工程力学研究所.
    时华星, 曹建军, 伍向阳等, 2004.济阳坳陷下第三系岩石地震波传播速度分析.油气地质与采收率, 11(4):28-30. http://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200404010.htm
    孙成禹, 肖云飞, 印兴耀等, 2010.黏弹介质波动方程有限差分解的稳定性研究.地震学报, 32(2):147-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201002003.htm
    王童奎, 李瑞华, 李小凡等, 2007.谱元法数值模拟地震波传播.防灾减灾工程学报, 27(4):470-477. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200704015.htm
    杨祥森, 2009. 粘弹介质中有限差分法地震波场数值模拟. 见: 中国地球物理2009. 北京: 中国地球物理学会.
    张冬丽, 陶夏新, 周正华, 2004.近场地震动格林函数的解析法与数值法对比研究.地震工程学报, 26(3):199-205. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200403002.htm
    张勇, 冯万鹏, 许力生等, 2008.2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学, 38(10):1186-1194. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810003.htm
    Andrews D. J., Ben-Zion Y., 1997. Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 102(B1):553-571. doi: 10.1029/96JB02856
    Burridge R., Levy C., 1974. Self-similar circular shear cracks lacking cohesion. Bulletin of the Seismological Society of America, 64(6):1789-1808.
    Day S. M., Dalguer L. A., Lapusta N., et al., 2005. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research, 110(B12):B12307. doi: 10.1029/2005JB003813
    Duan B. C., Oglesby D. D., 2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults. Journal of Geophysical Research, 111(B5):B05309.
    Fletcher J. B., Spudich P., 1998. Rupture characteristics of the three M~4.7 (1992-1994) Parkfield earthquakes. Journal of Geophysical Research, 103(B1):835-854. doi: 10.1029/97JB01797
    Harris R. A., Archuleta R. J., Day S. M., 1991. Fault steps and the dynamic rupture process:2-D numerical simulations of a spontaneously propagating shear fracture. Geophysical Research Letters, 18(5):893-896. doi: 10.1029/91GL01061
    Harris R. A., 2004. Numerical simulations of large earthquakes:dynamic rupture propagation on heterogeneous faults. Pure and Applied Geophysics, 161(11-12):2171-2181. doi: 10.1007%2Fs00024-004-2556-8.pdf
    Komatitsch D., Tromp J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3):806-822. doi: 10.1046/j.1365-246x.1999.00967.x
    Komatitsch D., Barnes C., Tromp J., 2000. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 65(4):1251-1260. doi: 10.1190/1.1444816
    Komatitsch D., Tromp J., 2002. Spectral-element simulations of global seismic wave propagation-Ⅱ. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1):303-318. doi: 10.1046/j.1365-246X.2002.01716.x
    Komatitsch D., Liu Q., Tromp J., et al., 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bulletin of the Seismological Society of America, 94(1):187-206. doi: 10.1785/0120030077
    Madariaga R., Olsen K. B., 2000. Criticality of rupture dynamics in 3-D. Pure and Applied Geophysics, 157(11):1981-2001. doi: 10.1007/PL00001071
    Oglesby D. D., Archuleta R. J., Nielsen S. B., 2000a. Correction to "dynamics of dip-slip faulting:explorations in two dimensions" by David D. Oglesby, Ralph J. Archuleta, and Stefan B. Nielsen. Journal of Geophysical Research, 105(B8):19149-19150.
    Oglesby D. D., Archuleta R. J., Nielsen S. B., 2000b. The three-dimensional dynamics of dipping faults. Bulletin of the Seismological Society of America, 90(3):616-628. doi: 10.1785/0119990113
    Oglesby D. D., Day S. M., 2001. The effect of fault geometry on the 1999 Chi-Chi (Taiwan) earthquake. Geophysical Research Letters, 28(9):1831-1834. doi: 10.1029/2000GL012043
    Patera A. T., 1984. A spectral element method for fluid dynamics:laminar flow in a channel expansion. Journal of Computational Physics, 54(3):468-488. doi: 10.1016/0021-9991(84)90128-1
    Richards P. G., 1976. Dynamic motions near an earthquake fault a three-dimensional solution. Bulletin of the Seismological Society of America, 66(1):1-32.
    Ronquist E. M., Patera A. T., 1988. A Legendre spectral element method for the incompressible Navier-Stokes equations. The 7th GAMM-Conference on Numerical Methods in Fluid Mechanics.
    Seriani G., Priolo E., Carcione J., et al., 1992. High-order spectral element method for elastic wave modeling. In:62nd Annual International Meeting, SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, 1285-1288.
    Zhang H. M., Chen X. F., 2006. Dynamic rupture on a planar fault in three-dimensional half space-Ⅰ. Theory. Geophysical Journal International, 164(3):633-652. doi: 10.1111/gji.2006.164.issue-3
    Zhang W. B., Tomotaka I., Kojiro I., et al., 2004. Dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake. Geophysical Research Letters, 31(10):L10605.
    Zhang Z. G., Zhang W., Chen X. F., 2014. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics. Geophysical Journal International, 199(2):860-879. doi: 10.1093/gji/ggu308
    Zhou H., Jiang H., 2015. A new time-marching scheme that suppresses spurious oscillations in the dynamic rupture problem of the spectral element method:the weighted velocity Newmark scheme. Geophysical Journal International, 203(2):927-942. doi: 10.1093/gji/ggv341
  • 加载中
图(6)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  67
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 刊出日期:  2017-09-01

目录

    /

    返回文章
    返回