• ISSN 1673-5722
  • CN 11-5429/P

典型土层场地随机地震反应规律分析

杜修力 袁雪纯 黄景琦 许紫刚

杜修力, 袁雪纯, 黄景琦, 许紫刚. 典型土层场地随机地震反应规律分析[J]. 震灾防御技术, 2017, 12(3): 574-588. doi: 10.11899/zzfy20170314
引用本文: 杜修力, 袁雪纯, 黄景琦, 许紫刚. 典型土层场地随机地震反应规律分析[J]. 震灾防御技术, 2017, 12(3): 574-588. doi: 10.11899/zzfy20170314
Du Xiuli, Yuan Xuechun, Huang Jingqi, Xu Zigang. Analysis of Stochastic Seismic Response in Typical Soil Sites[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 574-588. doi: 10.11899/zzfy20170314
Citation: Du Xiuli, Yuan Xuechun, Huang Jingqi, Xu Zigang. Analysis of Stochastic Seismic Response in Typical Soil Sites[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 574-588. doi: 10.11899/zzfy20170314

典型土层场地随机地震反应规律分析

doi: 10.11899/zzfy20170314
基金项目: 

国家自然科学基金重大研究计划 91215301

国家自然科学基金创新研究群体项目 51421005

教育部“创新团队发展计划 IRT13044

详细信息
    作者简介:

    杜修力, 男, 生于1962年。教授。主要从事地震工程领域研究。E-mail:duxiuli@bjut.edu.cn

Analysis of Stochastic Seismic Response in Typical Soil Sites

  • 摘要: 针对硬、中、软3种土层场地,选取历史上实测到的Ⅰ类和Ⅱ类场地的地震动记录各100条,分别调整地震动记录加速度峰值至0.1g、0.2g和0.3g,并采用一维等效线性化方法开展了场地随机地震反应研究,系统分析了地震动峰值加速度、速度和位移反应的变异性规律。主要结论为,位移和速度峰值的变异性随场地土变软而增大;位移和速度峰值变异性较加速度峰值的变异性更为突出;利用50条左右的地震动记录即可获得场地地震反应均值和标准差较为稳定的结果。
  • 图  1  金安桥地铁车站场地土体的强度和阻尼比随应变的变化曲线

    Figure  1.  Curves of soil strength and damping ratio versus strain (Jinanqiao subway station)

    图  2  珠市口地铁车站场地土体的强度和阻尼比随应变的变化曲线

    Figure  2.  Curves of soil strength and damping ratio versus strain (Zhushikou subway station)

    图  3  星海广场地铁车站场地土体的强度和阻尼比随应变的变化曲线

    Figure  3.  Curves of soil strength and damping ratio versus strain (Xinghaiguangchang subway station)

    图  4  基岩输入地震动加速度反应谱

    Figure  4.  Seismic acceleration response spectrum of bedrock input

    图  5  Ⅰ类和Ⅱ类场地地震动的震级和震源距分布图

    Figure  5.  Magnitude and hypocentral distance profiles of ground motion of I and II site classes

    图  6  不同场地的地震动反应谱特征周期频数分布图

    Figure  6.  Characteristic frequency spectrum of ground motion response at different sites

    图  7  场地沿深度方向加速度放大系数

    Figure  7.  Acceleration amplification factor in depth direction

    图  8  地表加速度峰值均值和变异性

    Figure  8.  Mean value and variability of surface acceleration peak

    图  9  场地沿深度方向速度峰值分布

    Figure  9.  Peak velocity distribution in the depth direction

    图  10  地表相对速度峰值均值和变异性

    Figure  10.  Mean value and variability of surface relative velocity

    图  11  场地沿深度方向相对位移峰值分布

    Figure  11.  Peak distribution of relative displacement in the depth direction

    图  12  地表相对位移峰值均值和变异性

    Figure  12.  Peak value and variability of surface relative displacement

    图  13  金安桥站加速度、速度、位移峰值均值和标准差

    Figure  13.  Mean value and standard deviation of acceleration, velocity and displacement (Jinanqiao subway station)

    图  14  苏州星海广场站加速度、速度、位移峰值均值和标准差

    Figure  14.  Mean value and standard deviation of acceleration, velocity and displacement (Xinghaiguangchang subway station)

    表  1  场地土层剖面材料

    Table  1.   Site soil profile material

    典型场地 层号 层厚/m 土层类别 密度/kg·m-3 剪切模量/MPa 剪切波速/m·s-1
    1 4.0 人工填土 17.0 65.2 194
    金安桥 2 9.0 圆砾卵石1 21.0 481 474
    3 10.0 圆砾卵石2 22.0 796.6 596
    4 17.0 圆砾卵石3 21.5 815.5 610
    1 1.6 人工填土 17.5 57.8 180
    2 3.5 粉质黏土 19.0 113.4 242
    珠市口 3 6.0 细-中砂 20.0 178.6 296
    4 7.4 细-粉砂 20.0 180 159
    5 21.5 圆砾卵石 22.8 538.5 480
    1 5.5 淤泥质土 19.2 25.0 114
    星海广场 2 16.5 淤泥粉质黏土 18.7 47.9 160
    3 17.0 粉细砂 19.0 105.8 235
    4 21.0 粘土 20.2 126.3 250
    下载: 导出CSV

    表  2  《建筑抗震设计规范(GB 50011—2010)》场地分类

    Table  2.   Site classification of the code for seismic design of buildings (GB 50011—2010)

    剪切波速vs/m·s-1 各场地类别覆盖层厚度/m
    0 1
    vs>800 0
    800≥vs>500 0
    500≥vse>250 <5 ≥5
    250≥vse>150 <3 3—50 >50
    vse≤150 <3 3—15 15—80 >80
    下载: 导出CSV
  • 薄景山, 李秀领, 李山有, 2003.场地条件对地震动影响研究的若干进展.世界地震工程, 19(2):11-15. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200302002.htm
    陈龙伟, 冯浩, 袁晓铭, 2015.基于单台强震数据软厚场地地震反应不确定性分析.土木建筑与环境工程, 37(3):35-41. doi: 10.11835/j.issn.1005-2909.2015.03.008
    陈永新, 迟明杰, 李小军, 2016.基于强震动记录确定的场地卓越周期.地震学报, 38(1):138-145. doi: 10.11939/jass.2016.01.014
    胡聿贤, 1988.地震工程学.北京:地震出版社, 84-124.
    兰景岩, 吕悦军, 刘红帅, 2012.地震动强度及频谱特征对场地地震反应分析结果的影响.震灾防御技术, 7(1):37-45. doi: 10.11899/zzfy20120104
    李建亮, 亢川川, 何玉林等, 2011.场地条件对地面加速度峰值离散性的影响研究.震灾防御技术, 6(4):416-426. doi: 10.11899/zzfy20110407
    李天, 李杰, 1994.具有随机参数的场地地震反应分析.岩土工程学报, 16(5):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC405.009.htm
    李小军, 1989.一维土层地震反应线性化计算程序.见:廖振鹏编, 地震小区划(理论与实践).北京:地震出版社, 250-265.
    廖振鹏, 李小军, 1989.地表土层地震反应的等效线性化解法.见:廖振鹏编, 地震小区划(理论与实践).北京:地震出版社, 141-153.
    刘方成, 武景芳, 陈斌等, 2015.软土层几何特性与剪切波速对场地峰值加速度的影响.震灾防御技术, 10(4):840-852. doi: 10.11899/zzfy20150403
    吕红山, 赵凤新, 2007.适用于中国场地分类的地震动反应谱放大系数.地震学报, 29(1):67-76. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200701007.htm
    欧阳行艳, 章文波, 2008.利用强震记录进行场地反应分析研究综述.世界地震工程, 24(3):118-126. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200803021.htm
    齐文浩, 2004. 土层地震反应分析方法的比较研究. 哈尔滨: 中国地震局工程力学研究所.
    齐文浩, 薄景山, 张忠利, 2010.土层地震反应分析的研究现状.世界地震工程, 26(S1):368-372. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1074.htm
    童广才, 刘康和, 2000.场地卓越周期的确定.电力勘测, 26(2):43-46. http://www.cnki.com.cn/Article/CJFDTOTAL-TJCS200403002.htm
    赵松戈, 胡聿贤, 廖旭, 2000.土层参数的随机性对场地传递函数的影响.地震工程与工程振动, 20(2):7-12. http://cdmd.cnki.com.cn/Article/CDMD-10056-2004075399.htm
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011-2010建筑抗震设计规范. 北京: 中国建筑工业出版社.
    中华人民共和国住房和城乡建设部, 2011. JGJ/T 97-2011工程抗震术语标准. 北京: 中国建筑工业出版社.
    Bardet J. P., Ichii K., Lin C. H., 2000. EERA-a computer program for equivalent-linear earthquake site response analyses of layered soil deposits. Los Angeles:University of Southern California.
    Hardin B. O., Drnevich V. P., 1972. Shear modulus and damping in soils:design equations and curves. Soil Mechanics and Foundations Division, 98(SM7):667-692.
    Idriss I. M., Seed H. B., 1968. Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundations Division, 94(SM4):1003-1031.
    Idriss I. M., Sun J., 1992. User's manual for SHAKE91-a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits:center for Geotechnical Modeling. Davis, California:Department of Civil & Environmental Engineering, University of California.
    Kondner P. L., 1963. Hyperbolic stress-strain response:cohesive soils. Journal of the Soil Mechanics and Foundations Division, 89(SM1):115-143.
    Trifunac M. D., 2016. Site conditions and earthquake ground motion-a review. Soil Dynamics and Earthquake Engineering, 90:88-100. doi: 10.1016/j.soildyn.2016.08.003
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  51
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 刊出日期:  2017-09-01

目录

    /

    返回文章
    返回