Seismic Zoning in Southern Part of North-South Seismic Belt Based on the Potential Rupture Surface Source Model
-
摘要: 南北地震带南段大震活动频繁。已有的研究结果表明,大震近场范围场点的地震危险性与地震破裂面产状及其尺度密切相关。因此,在南北地震带南段需要考虑潜在震源三维特征进行地震危险性分析和地震区划研究。本文在充分搜集大震发震构造资料的基础上,在南北地震带南段构建了考虑震源尺度和产状的潜在震源模型,改进了地震危险性概率分析方法,进而对该地区进行地震区划研究。结果表明,考虑潜在震源三维特征的地震危险性分析结果可以有效地反映南北地震带南段发震构造的产状和尺寸特征,提高地震区划结果的合理性。
-
关键词:
- 南北地震带南段 /
- 潜在地震破裂面源模型 /
- 地震危险性分析 /
- 地震区划
Abstract: There are many large earthquake actives recorded in the southern part of North-South seismic belt. The seismic hazard near the potential large earthquake source is related to size and attitude of potential ruptures according to the recent studies. So, the 3-D characteristics of potential sources should be considered to analyze the seismic hazard near the large faults that have the possibility to generate great earthquakes. In this study, the plenty of data of strong earthquake and seismo-tectonics are collected and the potential rupture surface source model are constructed to consider the size and attitude of large earthquakes, in order to make the seismic hazard analysis results more reasonable in the southern part of North-South seismic belt. From this study, we conclude that the seismic zoning results show the spatial characteristic, such as attitude and size of seismogenic structures, so it makes the results of the seismic hazard analysis and seismic zoning more reasonable in the southern part of North-South seismic belt. -
表 1 潜在地震破裂面源划分表
Table 1. The regional potential rupture surface sources
编号 潜在地震破裂面源名称 震级上限 走向 倾向 倾角/° 1 曲江断裂 8.0 NW NE/SW 近直立 2 石屏-建水断裂 7.5 NW NE 70 3 红河断裂南东段 7.0 NW NE 65 4 红河断裂北西段 7.5 NNW NEE 65 5 小江断裂南段东支 8.0 NS E 70 6 小江断裂南段西支 8.0 NS E 70 7 小江断裂北段 8.0 NNW NEE 70 8 则木河断裂 8.0 NW NE 70 9 程海断裂 8.0 NNE W 80 10 丽江断裂 7.5 NE SE 65 11 普渡河断裂 6.5 NS E/W 近直立 12 汤郎-易门断裂 6.5 NS E/W 近直立 13 元谋-绿汁江断裂 6.5 NS E/W 近直立 14 南华-楚雄断裂 6.5 NW NE 近直立 15 无量山断裂 6.5 NNW NEE 80 表 2 各地震带地震活动性参数
Table 2. Seismicity parameters of seismic belts
地震带 震级上限Mu 4级以上地震年平均发生率v4 b值 鲜水河-滇东地震带 8 32 0.85 滇西南地震带 8 20 0.77 表 3 基岩加速度峰值衰减关系各项系数表
Table 3. The parameters of peak ground acceleration attenuation relationship
系数 C1 C2 C3 C4 C5 C6 σlgSa 长轴 0.537 1.167 -0.051 -2.170 2.170 0.383 0.232 短轴 -0.760 1.068 -0.046 -1.490 0.264 0.530 0.232 -
陈培善, 白彤霞, 1991.震源参数之间的定量关系.地震学报, 13(4):401-411. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199104000.htm 陈培善, 李保昆, 白彤霞, 1998.根据构造环境应力场预测峰值水平加速度.地球物理学报, 41(4):502-517. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199804008.htm 杜平山, 冯元保, 2000.则木河活动断裂的内部结构.四川地震, (1-2):24-48. http://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ2000Z1002.htm 虢顺民, 2001.红河活动断裂带.北京:海洋出版社. 韩新民, 柴天俊, 肖九安等, 1982.石屏-建水断裂中段的新活动与地震.地震研究, 5(2):220-225. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ198202009.htm 胡聿贤, 1999.地震安全性评价技术教程.北京:地震出版社. 黄小龙, 吴中海, 吴坤罡等, 2016.滇西北永胜地区主要活动断裂与活动构造体系.地质力学学报, 22(3):531-547. http://www.cnki.com.cn/Article/CJFDTOTAL-HQDL201707044.htm 罗睿洁, 吴中海, 黄小龙等, 2015.滇西北宾川地区主要活动断裂及其活动构造体系.地质通报, 34(1):155-170. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501013.htm 宋方敏, 1998.小江活动断裂带.北京:地震出版社. 向宏发, 徐锡伟, 虢顺民等, 2002.丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义——陆内活动地块横向构造的屏蔽作用.地震地质, 24(2):188-198. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200202005.htm 胥广银, 高孟潭, 2007.潜在地震破裂面源模型及在概率地震危险性分析中的应用方法.地震学报, 29(3):285-294. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200703009.htm 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2006.GB17741-2005工程场地地震安全性评价.北京:中国标准出版社. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016.GB 18306-2015中国地震动参数区划图.北京:中国标准出版社. 周本刚, 陈国星, 高战武等, 2013.新地震区划图潜在震源区划分的主要技术特色.震灾防御技术, 8(2):113-124. doi: 10.11899/zzfy20130201 周瑞琦, 皇甫岗, 韩源, 1995.曲江断裂断面结构及地震地质意义.地震研究, 18(1):68-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ501.009.htm Aki K., 1968. Seismic displacements near a fault. Journal of Geophysical Research, 73(16):5359-5376. doi: 10.1029/JB073i016p05359 Boore D. M., Joyner W. B., Fumal T. E., 1997. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes:a summary of recent work. Seismological Research Letters, 68(1):128-153. doi: 10.1785/gssrl.68.1.128 Campbell K. W., 1987. Predicting strong ground motion in Utah. In:Gori P. L., Hays W. W., eds, Assessment of Regional Earthquake Hazard and Risk Along the Wasatch Front. Utah:U.S. Geological Survey Open File Report 87-585 Ⅱ, L1-L90. Campbell K. W., 1990. Empirical prediction of near source soil and soft rock ground motion for the Diablo canyon power plant site. Colorado:Report Prepared for Lawrence Livermore National Laboratory, Dames and Moore, Evergreen. Campbell K. W., 1993. Empirical prediction of near-source ground motion from large earthquakes. In:Gaur V. K., ed., Proceedings of the International Workshop on Earthquake Hazard and large Dams in the Himalaya. New Delhi:The Indian National Trust for Art and Cultural Heritage (INTACH), 93-103. Campbell K. W., Bozorgnia Y., 1994. Near-source attenuation of peak horizontal acceleration from worldwide accelerograms recorded from 1957 to 1993. In:Proceedings of the Fifth U.S. National Conference on Earthquake Engineering. Okland, California:Chicago, Earthquake Research Institute, 283-292. Campbell K. W., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological Research Letters, 68(1):154-179. doi: 10.1785/gssrl.68.1.154 Cornell C. A., 1968. Engineering seismic risk analysis. Bulletin of Seismological Society of America, 58(5):1583-1606. http://bssa.geoscienceworld.org/content/ssabull/58/5/1583.full.pdf Der Kiureghian A., Ang A. H. S., 1977. A fault-rupture model for seismic risk analysis. Bulletin of Seismological Society of America, 67(4):1173-1194. http://www.worldcat.org/title/sensitivity-analysis-for-seismic-risk-using-a-fault-rupture-model/oclc/9796770 Douglas B. M., Ryall A., 1977. Seismic risk in linear source regions with application to the San Andreas fault. Bulletin of the Seismological Society of America, 67(1):233-241. http://www.bssaonline.org/content/67/1/233.abstract Geller R. J., 1976. Scaling relations for earthquake source parameter and magnitude. Bulletin of the Seismological Society of America, 66(5):1051-1523. http://authors.library.caltech.edu/49784/1/1501.full.pdf Joyner W. B., Boore D. M., 1993. Methods for regression analysis of strong-motion data. Bulletin of the Seismological Society of America, 83(2):469-487. http://www.bssaonline.org/content/83/2/469.short Kanamori H, Anderson D. L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(6):1073-1095. http://www.academia.edu/7807233/THEORETICAL_BASIS_OF_SOME_EMPIRICAL_RELATIONS_IN_SEISMOLOGY Reiter L., 1991. Earthquake hazard analysis-issues and insights. New York:Columbia University Press. Sadigh K., Chang C. Y., Egan J. A., et al. 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, 68(1):180-189. doi: 10.1785/gssrl.68.1.180 Schnabel P. B., Seed H. B., 1973. Accelerations in rock for earthquakes in the western united states. Bulletin of the Seismological Society of America, 63(2):501-516. http://bssa.geoscienceworld.org/content/63/2/501 Wells D. L., Coppersmith K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4):974-1002. http://www.academia.edu/1151208/New_Empirical_Relationships_among_Magnitude_Rupture_Length_Rupture_Width_Rupture_Area_and_Surface_Displacement