• ISSN 1673-5722
  • CN 11-5429/P

从库仑破裂应力和余震分布角度探讨汶川地震和芦山地震的关系

刘盼 李平恩 廖力

李琳, 王俊杰. 四川省城市地震灾害脆弱性综合评价研究[J]. 震灾防御技术, 2018, 13(4): 968-977. doi: 10.11899/zzfy20180424
引用本文: 刘盼, 李平恩, 廖力. 从库仑破裂应力和余震分布角度探讨汶川地震和芦山地震的关系[J]. 震灾防御技术, 2017, 12(1): 40-55. doi: 10.11899/zzfy20170105
Li Lin, Wang Junjie. Comprehensive Evaluation of Urban Earthquake Disaster Vulnerability in Sichuan Province[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 968-977. doi: 10.11899/zzfy20180424
Citation: Liu Pan, Li Ping'en, Liao Li. Discussion of Relationship between the Wenchuan Earthquake and Lushan Earthquake from the Viewpoint of Coulomb Failure Stress Change and Spatial Distribution of Aftershocks[J]. Technology for Earthquake Disaster Prevention, 2017, 12(1): 40-55. doi: 10.11899/zzfy20170105

从库仑破裂应力和余震分布角度探讨汶川地震和芦山地震的关系

doi: 10.11899/zzfy20170105
基金项目: 

地震行业科研专项 201408014

中国地震局地球物理研究所基本科研业务费 DQJB14C06

详细信息
    作者简介:

    刘盼, 男, 生于1987年。硕士研究生。目前从事地球动力学数值模拟方面的研究。E-mail:liupan_0214@163.com

    通讯作者:

    李平恩, 男, 生于1977年。副研究员。目前从事地球动力学数值模拟方面的研究。E-mail:pingen2000@163.com

Discussion of Relationship between the Wenchuan Earthquake and Lushan Earthquake from the Viewpoint of Coulomb Failure Stress Change and Spatial Distribution of Aftershocks

  • 摘要: 本文以龙门山及周边地区为研究对象,考虑区域地质构造差异、主要活动断裂带、地表附加重力影响,建立能反映地表起伏和岩石圈分层结构的龙门山地区三维粘弹性有限元模型。以地壳水平运动速率观测值为约束条件重建研究区现今构造背景应力场,在此基础上分别模拟了汶川地震和芦山地震的发生机理。通过分析同震库仑破裂应力变化与余震空间分布的关系,探讨了2次地震主震对余震的触发作用以及汶川地震对芦山地震的影响。研究表明,汶川地震和芦山地震的余震大部分由其主震触发,汶川地震对芦山地震的余震有约6.78%的触发作用。汶川地震的同震库仑破裂应力在芦山地震主震位置的增加值约为0.016MPa,如果龙门山断裂带南段库仑破裂应力年累积速率按照0.4×10-3-0.6×10-3MPa·a-1计算,汶川地震使芦山地震提前了约27-40年。计算还表明汶川地震和芦山地震的发生使鲜水河断裂带南段和虎牙断裂的库仑破裂应力增加,这些断裂带在未来发生地震的可能性增加。
  • 随着社会经济的不断发展,城市人口急剧膨胀、生态结构不尽合理,城市的地震灾害脆弱性日益凸显。因此,合理认识评价城市地震灾害的脆弱性,将有助于降低城市震害风险、减少震灾损失和指导城市科学防震减灾。近年来,国内外学者越来越关注地震灾害的脆弱性研究,特别是从系统工程角度,将社会性因素纳入承灾体的脆弱性分析,并采取不同评价方法进行脆弱性评价。Martins等(2012)基于GIS并利用多标准分析技术评估地震风险的社会脆弱性;石勇等(2010)利用层次分析法对区域脆弱性和人群脆弱性进行了评价;苏桂武等(2010)利用主成分分析、因子分析等数理分析方法,定量评价震害区域的宏观脆弱性;安瓦尔·买买提明等(2013)运用模糊综合评价法进行自然灾害脆弱性评估;冯领香等(2013)利用灰色评价理论对区域震害脆弱性进行了分析;张永领等(2014)利用TOPSIS方法评价了自然灾害社会脆弱性;徐选华等(2016)利用突变级数法对震害的社会脆弱性进行了评价。虽然研究成果诸多,但对于评价指标体系和评价方法的研究尚不成熟,评价体系的构建还难以达成统一标准,研究方法大多为综合指数法、层次分析法、模糊评价法等主观性较强的方法,评价结果不够客观,且基于智能算法的评价模型在震害脆弱性评价领域还未能得到广泛的应用。

    四川省地形地质情况复杂,地震灾害频发,也是多民族聚集区,各市、州间自然社会背景差异较大,区域发展不均衡,因此,科学合理地评价城市震害脆弱性显得尤为重要。基于此,本文在构建震害脆弱性评价指标体系的基础上,运用基于实码加速遗传算法优化投影寻踪(RAGA-PP)模型,分别分析人口、工程、经济及社会4个方面的脆弱性,并评价城市震害的综合脆弱性,对四川省21个市、州进行了震害脆弱性评价,以期为地震灾害脆弱性评价提供1个新思路,评价结果可为政府有关部门进行防震减灾规划提供一定依据。

    目前,对于脆弱性的概念还未形成统一的定义,灾害学研究中通常把脆弱性归结为暴露性、敏感性和恢复力3个方面,认为承灾体脆弱性与其社会过程密切相关(IDB,2010);联合国国际减灾组织认为承灾体的脆弱性是由其本质属性、社会、经济和环境因素共同作用下的结果,反映了承灾体在灾害作用下的易损程度(UN/ISDR,2004)。苏桂武等(2007)指出,震害脆弱性是承灾体在地震时所表现出来的破坏损失机会多少、破坏损失潜力大小和破坏后恢复能力强弱等方面的综合性质。综合上述观点,本文所研究的城市承灾体的脆弱性是指:假定该城市在地震灾害影响范围内,在城市物理属性、社会、经济等因素的共同影响下,承灾体在面临地震灾害时受到损害的可能性和程度的性质,包括暴露度、敏感度和恢复力3个方面。

    地震灾害的脆弱性是受自然环境、工程状况、社会发展、经济水平等诸多因素综合影响的复杂性系统问题。在已有研究的基础上,依据科学性、代表性、实用性等构建原则,综合考虑评价数据的可获取性,结合能够体现脆弱性概念本质特点的指标,从脆弱性影响因素和评价目标的角度搭建评价体系的逻辑层次,建立人口脆弱性、工程脆弱性、经济脆弱性、社会脆弱性4个准则层,具体选取16个评价指标,构建了城市地震灾害综合脆弱性评价指标体系(表 1)。

    表 1  城市地震灾害综合脆弱性评价指标体系
    Table 1.  Comprehensive vulnerability evaluation index system for urban earthquake disaster
    目标层 准则层 要素层 属性
    城市地震灾害综合脆弱性A 人口脆弱性B1 14—65岁人口C1(万人) -
    高中以上学历占比C2(%) -
    男性比例C3(%) -
    人口密度C4(人/km2 +
    工程脆弱性B2 建成区供水管道密度C5(km/km2 +
    平均建筑层数C6(层) +
    平均建筑年限C7(年) +
    建筑密度C8(%) +
    经济脆弱性B3 人均可支配收入C9(元) -
    人均GDP C10(元) -
    经济密度C11(万元/km2 +
    经济多样性C12(%) +
    城市地震灾害综合脆弱性A 社会脆弱性B4 万人病床数C13(个) -
    人均固定资产投资C14(元/人) -
    人均城市道路面积C15(m2 -
    人均公园绿地面积C16(m2 -
      注:属性中,“+”代表越大越优(正向)指标,“-”代表越小越优(逆向)指标。
    下载: 导出CSV 
    | 显示表格

    投影寻踪的基本思想是将高维数据依据某种组合形式,向低维子空间投影,找出能够反映原高维数据本质结构和特征的投影,通过使用在低维空间上具有良好效果的统计分析方法对数据在低维空间上求解,从而达到分析和处理高维数据的目的(付强等,2006)。投影寻踪方法能将高维数据降维,较好地解决复杂的非线性问题,最大限度地反映原始数据的内在结构特点,避免一些影响数据本质的无关变量的干扰,因此避免了主观因素的影响,更具客观性。

    遗传算法模拟生物进化论中“适者生存,优胜劣汰”的进化机制和遗传学中染色体信息交换机理,是1种自适应全局并行搜索求解最优解的算法(金菊良等,2000)。其思想是在产生初代种群后,每1代依据个体适应度选择最优个体,通过一系列的选择、交叉和变异操作逐代演化出更优解,直到逼近最优解。标准的遗传算法存在易早熟收敛、精确度不高的缺点,为克服这些缺点,在此基础上改进形成了基于实数编码的加速遗传算法(RAGA)。RAGA算法的特点是将优秀个体作为新的区间来调整搜索范围,选择、交叉、变异操作是并行的,因此RAGA的搜索范围更为广泛,更易得到全局最优点,避免陷入局部最优,精确度更高。

    投影寻踪方法的计算量较大,为增强投影寻踪方法的适用性和可操性,使用实码加速遗传算法来优化投影方向。基于实码加速遗传算法优化投影寻踪模型的建模步骤如下(黄勇辉等,2009):

    (1)评价指标的归一化。设待评指标值的样本集为{xij|i=1,2,……,nj=1,2,……,m},其中xij是第i个样本的第j个指标值。为消除各指标值不同量纲的影响,对原始数据进行归一化处理:

    $$ x_{ij}^* = \left\{ \begin{array}{l} \frac{{{x_{ij}} - {x_{j\min }}}}{{{x_{j\max }} - {x_{j\min }}}}, \;\;越大越优(正向)指标\\ \frac{{{x_{j\max }} - {x_{ij}}}}{{{x_{j\max }} - {x_{j\min }}}}, \;\;越小越优(逆向)指标 \end{array} \right. $$ (1)

    其中,xjmaxxjmin分别为第j个指标的最大值和最小值,xij*为指标值归一化处理后的序列。

    (2)构造投影指标函数Q(a)。投影寻踪法把m维数据{xij*|j=1,2,……,m}综合成以单位向量a={a(1),a(2),……,a(m)}为投影方向的一维投影值zi,即:

    $$ {z_i} = \sum\limits_{j = {\rm{1}}}^m {{a_j}x_{ij}^*} ,\;\;\;\;i = {\rm{1}},{\rm{2}}, \cdots \cdots ,n $$ (2)

    评价时,为了使数据尽量呈现投影点局部密集、整体分散的情况,投影指标函数可以表示为:

    $$ Q\left(a \right) = {S_z} \times {D_z} $$ (3)

    式中,Sz为投影值zi的标准差,Dz则为zi的局部密度,即:

    $$ {S_z} = \sqrt {\frac{{\sum\limits_{i = 1}^n {{{({z_i} - {E_z})}^2}} }}{{n - 1}}} $$ (4)
    $$ {D_z}{\rm{ = }}\sum\limits_{i = 1}^n {\sum\limits_{k = 1}^n {(R - {r_{ik}}) \times f(R - {r_{ik}})} } $$ (5)

    式中,Ez表示投影a上的投影平均值;R为局部密度的窗口半径,一般取值为0.1Sz;${r_{ik}} = \left| {{z_i} - {z_k}} \right|$,表示样本之间的距离;$f\left({R - {r_{ik}}} \right)$为单位跃阶函数,当$(R - {r_{ik}}) \ge 0$时,其值为1,$(R - {r_{ik}})< 0$时,其值为0。

    (3)基于实码加速遗传算法优化投影指标函数。投影寻踪的关键是求解满足投影指标函数的最佳投影方向向量,可以通过求解投影指标函数最大值来估计其最佳投影方向,即:

    $$ {\rm{Max}}Q\left(a \right) = {S_z} \times {D_z} $$ (6)
    $$ {\rm{S}}{\rm{.t}}{\rm{.}}\sum\limits_{j = {\rm{1}}}^m {a_j^2} {\rm{ = 1}} $$ (7)

    寻优过程是1个复杂的非线性优化问题,本文应用实码加速遗传算法求解寻优问题,即可求得最佳投影方向a*

    (4)进行评价值计算。将求得的最佳投影方向a*代入公式(2)中,可得到各样本的最佳投影值zi,从而得到各评价样本的评价值。

    依据四川省的实际情况,以城市承灾体为研究对象,选取四川省各市、州作为研究区域,主要包括成都、自贡、攀枝花、泸州等21个市、州。四川省位于中国的西南腹地,地处第一阶梯和第二阶梯的过渡带,地势地貌复杂,处于喜马拉雅—地中海地震带上。四川省地震灾害频发,2008年曾发生汶川8.0级大地震,造成极大损失。根据中国地震台网数据(中国地震台网,2018),2013—2017年间中国累计发生5级及以上地震165次,其中四川省内及边界发生地震15次,发生次数仅次于台湾、新疆、西藏、云南,其中7.0级以上破坏性地震就多达2次。

    本文选取的数据依据《四川统计年鉴》(四川省统计局等,2014)及相关文献数据(徐选华等,2016)整理计算得,以表 1中的16个因素为具体指标,对数据进行归一化处理。

    利用MATLAB编制基于实码加速遗传算法优化投影寻踪模型程序,求得最佳投影向量。在MATLAB环境下对21个待评城市的总目标和4个子目标分别进行评价,运行程序,计算得到总目标A的最佳投影方向aA*=(0.1636,0.4125,0.3443,0.0565,0.1626,0.2054,0.2553,0.1547,0.2937,0.3925,0.0883,0.2082,0.2312,0.3796,0.1000,0.1570),此时Q(a)=1.1716。可进一步依据最佳投影方向来分析各指标对评价结果影响的重要程度。将a*代入式(2)可得到各市、州的投影值,即各市、州的震害综合脆弱性评价值,如表 2所示。计算出的投影值越大,说明该城市的震害综合脆弱性越高,反之则越低。

    表 2  地震灾害综合脆弱性评价结果
    Table 2.  Comprehensive vulnerability evaluation results of earthquake disasters
    地区 人口脆弱性评价B1 工程脆弱性评价B2 经济脆弱性评价B3 社会脆弱性评价B4 城市地震灾害综合脆弱性评价A
    z1 排序 z2 排序 z3 排序 z4 排序 zA 排序
    成都 0.2977 21 1.1227 3 0.0064 21 0.1304 21 0.0028 21
    自贡 1.2967 4 1.1293 2 0.6318 19 1.0946 9 1.4702 16
    攀枝花 0.4552 20 1.2142 1 0.1335 20 0.1312 20 0.3485 20
    泸州 1.1009 11 0.3810 12 0.8402 13 1.0975 8 1.9161 10
    德阳 0.9407 17 0.5000 7 0.6433 18 1.0281 10 1.4639 17
    绵阳 0.9218 18 0.9959 4 0.7413 16 0.9361 15 1.3129 19
    广元 1.1067 9 0.5178 6 1.0997 6 0.9425 14 1.8190 11
    遂宁 1.1157 6 0.3087 13 0.9694 9 0.9426 13 1.9220 8
    内江 1.1079 7 0.2513 15 0.8443 12 1.3024 3 1.9239 7
    乐山 1.0187 13 0.8884 5 0.8791 11 0.9360 16 1.5213 14
    南充 1.0493 12 0.4414 8 0.9702 7 1.2770 5 1.9371 2
    眉山 1.3087 3 0.2475 17 0.7880 15 0.9564 12 1.7465 13
    宜宾 0.9825 14 0.1506 21 0.7067 17 1.1216 7 1.8186 12
    广安 1.5140 1 0.4359 10 0.9696 8 1.2771 4 1.9270 5
    达州 1.1013 10 0.4384 9 1.1559 4 1.3909 1 1.9276 4
    雅安 0.9560 15 0.2484 16 0.9690 10 0.8826 17 1.4706 15
    巴中 1.1161 5 0.2237 19 1.3014 2 1.3539 2 2.2370 1
    资阳 1.3616 2 0.4357 11 0.8392 14 1.0097 11 1.9314 3
    阿坝州 0.6417 19 0.2389 18 1.2842 3 0.5128 19 1.3411 18
    甘孜州 0.9441 16 0.2635 14 1.4963 1 0.8375 18 1.9258 6
    凉山州 1.1075 8 0.1507 20 1.1085 5 1.2770 6 1.9214 9
    下载: 导出CSV 
    | 显示表格

    计算所得的震害综合脆弱性评价值的分布具有整体上离散、集中性积聚的特征,数据整体起伏较为明显,采用Nature Breaks(Jenks)法将震害综合脆弱性水平划分成5个等级,结果见表 3,并利用GIS进行评价结果的空间分析,绘制出四川省地震灾害人口、工程、经济、社会脆弱性等级分布图及地震灾害综合脆弱性等级分布图,见图 15

    图 1  人口脆弱性等级分布
    Figure 1.  Distribution of population vulnerability degrees
    图 2  工程脆弱性等级分布
    Figure 2.  Distribution of engineering vulnerability degrees
    图 3  经济脆弱性等级分布
    Figure 3.  Distribution of economic vulnerability degrees
    图 4  社会脆弱性等级分布
    Figure 4.  Distribution of social vulnerability degrees
    图 5  地震灾害综合脆弱性等级分布
    Figure 5.  Distribution of comprehensive vulnerability degrees of earthquake disasters
    表 3  地震灾害综合脆弱性等级划分结果
    Table 3.  Results of comprehensive vulnerability classification of earthquake disasters
    等级 综合脆弱性 评价值z 城市、州
    >1.9371 巴中
    较高 1.8191—1.9371 南充、资阳、达州、广安、甘孜州、内江、遂宁、凉山州、泸州
    中等 1.5214—1.8190 广元、宜宾、眉山
    较低 0.3486—1.5213 乐山、雅安、自贡、德阳、阿坝州、绵阳
    ≤0.3485 攀枝花、成都
    下载: 导出CSV 
    | 显示表格

    依据计算结果可知,四川省地震灾害综合脆弱性等级最高的是巴中,等级为较高的包括南充、资阳等9地,等级为中等的有广元、宜宾、眉山,等级为较低的包括乐山、雅安等6地,等级为低的是成都及攀枝花。巴中的综合脆弱性最高,其经济、社会、人口脆弱性皆处于较高水平,这是由于巴中的经济发展水平较为落后,医疗卫生条件较差、城市基础设施建设不完备,故其救灾救援及恢复生产的能力较差,人口结构的不合理又增加了其敏感性,使城市的脆弱性处于较高水平。而成都的综合脆弱性最低,这与城市的人口结构合理、建筑物抗震设防措施优、经济多样化程度高等因素有关,使得成都在面对地震时的敏感性减低、抵御能力更强。

    最佳投影方向体现了各个指标对目标影响的重要程度,二级指标中经济脆弱性的最佳投影方向数值最大,即代表经济因素对综合脆弱性的影响程度最大。计算结果也反映出,经济发展水平较高的地区其综合脆弱性较低,经济欠发达的地区其综合脆弱性较高。究其原因,城市的经济发展使得城市拥有较为雄厚的生产力资源和社会财富,政府有能力投入更多的财力和精力用于城市的防灾减灾建设,而城市化的发展往往伴随着城市基础设施建设的不断完善,应急和救援能力也相对较高,这使得城市具有一定的承灾能力。

    城市地震灾害综合脆弱性评价值体现了城市承灾系统在面临地震灾害下的暴露性、敏感性及抵御恢复能力,其值越大,说明城市在灾害下受到危害的可能性和损失程度越大。通过进一步改善城市的人口、工程、经济和社会状况,可优化人口结构、提高工程抗震设防水平、合理布局产业结构、完善基础设施建设等,重点是提高城市的经济发展水平。综合脆弱性影响了城市的地震风险水平,同时反映了城市的承灾能力,进行综合脆弱性评价研究有助于科学合理地指导城市的防震减灾工作。

    本文面向城市承灾系统,从人口、工程、经济及社会4个方面出发,建立了城市震害综合脆弱性评价体系,采用基于实码加速遗传算法优化投影寻踪模型对城市震害脆弱性进行评价,该模型依据指标数据内在的结构,较为客观真实地反映了指标数据的原始特征,减轻主观性因素对评价结果的干扰,评价方法科学有效,为涉及多因素的城市震害脆弱性综合评价提供了新思路。

    对四川省21个市、州进行了地震灾害脆弱性评价,结果表明巴中、南充等地具有较高的脆弱性,成都、攀枝花等地的脆弱性水平较低;经济性因素是城市震害脆弱性的主要影响要素;应通过重点发展城市经济建设、合理控制人口规模、提高工程的抗震性能、完善基础设施建设等措施,降低城市承灾系统的脆弱性,规避地震风险,提升城市的承灾能力,从而有助于城市防震减灾工作的发展。

  • 图  1  研究区域 (根据邓起东等,2011)

    Figure  1.  Research area of this study (after Deng et al., 2011)

    图  2  龙门山地区三维有限元模型

    Figure  2.  3-D finite element model of the Longmenshan area

    图  3  模型加载条件

    Figure  3.  Loading condition of the model

    图  4  地壳水平运动速率模拟值与观测值的对比

    Figure  4.  Comparison of the simulated and the observed values of the crustal horizontal movement velocity

    图  5  龙门山及周边地区主要断裂带上的库仑破裂应力年累积速率

    Figure  5.  Cumulative Coulomb failure stress of year in the main fault zone in Longmenshan and its surrounding area

    图  6  汶川地震的同震库仑破裂应力变化与余震的空间分布

    红色实心圆圈表示汶川地震主震,白色圆圈表示余震

    Figure  6.  Coseismic Coulomb stress change of the Wenchuan earthquake and the spatial distribution of aftershock

    图  7  芦山地震的同震库仑破裂应力变化与余震的空间分布

    红色实心五角星表示芦山地震主震,白色圆圈表示余震

    Figure  7.  Coseismic Coulomb stress change of the Lushan earthquake and the spatial distribution of aftershock (Solid red star represents the main shock of Lushan earthquake, the white circle represents the aftershock)

    图  8  汶川地震的同震库仑破裂应力在芦山地震破裂面上的投影

    红色实心圆圈表示汶川地震,红色实心五角星表示芦山地震

    Figure  8.  The projection of the coseismic Coulomb stress of the Wenchuan earthquake on the fracture plane of the Lushan earthquake

    图  9  汶川地震和芦山地震共同产生的同震库仑破裂应力变化与余震的空间分布

    红色实心五角星表示芦山地震,白色圆圈表示余震

    Figure  9.  Coseismic Coulomb stress change of the Wenchuan earthquake and Lushan earthquake as well as the spatial distribution of aftershock

    图  10  汶川地震和芦山地震共同引起的龙门山地区主要活动断层的库仑破裂应力变化

    Figure  10.  Coulomb stress change of the main active faults in Longmenshan and its surrounding area caused by the Wenchuan earthquake and Lushan earthquake

    表  1  研究区介质分层材料参数

    Table  1.   Material parameters of the layered medium in the research area

    分层 深度/km 四川盆地 青藏高原东缘
    E/1010·Pa υ η/1022·Pa·s E/1010·Pa υ η/1022·Pa·s
    地表 0-0.5 3.75 0.21 0.8 3.75 0.21 0.8
    上地壳 0.5-20 7.2 0.246 9.96 7.39 0.25 10.3
    下地壳 20-Moho面 12.5 0.253 0.925 11.9 0.254 2.02
    岩石圈 Moho面-100 17.5 0.265 0.05 17.50 0.265 0.05
    软流圈 100-200 17.5 0.265 0.5 17.50 0.265 0.5
    下载: 导出CSV

    表  2  汶川地震和芦山地震参数

    Table  2.   Earthquake parameters of the Wenchuan earthquake and Lushan earthquake

    事件 经度 纬度 走向 倾角 滑动角 最大水平滑动量/m 破裂长度/km 数据来源
    汶川 103.4°E 31.0°N 231° 35° 138° 4.9 > 300 中国地震台网中心;Global CMT;徐锡伟等,2008
    芦山 102.89°E 30.31°N 212° 44° 92° 1.3 46.7 USGS;曾祥方等,2013;徐锡伟,2013;张勇等,2013
    下载: 导出CSV

    表  3  研究区内主要活动断层参数及汶川地震和芦山地震共同引起的库仑破裂应力变化

    Table  3.   Parameters of the main active faults in research area and the Coulomb stress change caused by the Wenchuan earthquake and Lushan earthquake

    断裂名称 走向/° 倾角/° 滑动角/° 库仑破裂应力变化/MPa
    龙门山断裂带东北段 225 60 180 -4.2-3.2
    龙门山断裂带南段 220 60 90 -2-1.8
    鲜水河断裂带南段 142-159.5 90 0-45 0.005-0.15
    龙日坝断裂 205-229 60 135 -0.067-0
    岷江断裂 180 45-60 45-70 -2.96-0
    虎牙断裂 150 75 45 0~0.08
    下载: 导出CSV
  • 曹建玲, 石耀霖, 张怀, 王辉, 2009.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟.科学通报, 54(2):224-234. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200902017.htm
    陈立春, 冉勇康, 王虎等, 2013.芦山地震与龙门山断裂带南段活动性.科学通报, 58(20):1925-1932. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320007.htm
    陈连旺, 陆远忠, 刘杰等, 2001.1966年邢台地震引起的华北地区应力场动态演化过程的三维粘弹性模拟.地震学报, 23(5):480-491. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200105003.htm
    陈连旺, 张培震, 陆远忠等, 2008.川滇地区强震序列库仑破裂应力加卸载效应的数值模拟.地球物理学报, 51(5):1411-1421. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805015.htm
    陈运泰, 杨智娴, 张勇, 刘超, 2013.从汶川地震到芦山地震.中国科学:地球科学, 43(6):1064-1072. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSCD201701022.htm
    董培育, 程惠红, 曾祥方, 石耀霖, 2013.四川芦山MS 7.0级地震导致周边断层的应力变化.科技导报 (北京), 31(12):19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjdb201312015&dbname=CJFD&dbcode=CJFQ
    邓起东, 陈社发, 赵小麟, 1994.龙门山及其邻区的构造和地震活动及动力学.地震地质, 16(4):389-403. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ404.013.htm
    邓起东, 陈桂华, 朱艾斓, 2011.关于2008年汶川MS 8.0地震震源断裂破裂机制几个问题的讨论.中国科学:地球科学, 41(11):1559-1576. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201111002&dbname=CJFD&dbcode=CJFQ
    房立华, 吴建平, 王未来等, 2013.四川芦山MS 7.0级地震及其余震序列重定位.科学通报, 58(20):901-1909. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201320004&dbname=CJFD&dbcode=CJFQ
    李传友, 宋方敏, 冉勇康, 2004.龙门山断裂带北段晚第四纪活动性讨论.地震地质, 26(2):248-258. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200402006.htm
    李玉江, 陈连旺, 陆远忠, 詹自敏, 2013a.汶川地震的发生对周围断层稳定性影响的数值模拟.地球科学——中国地质大学学报, 38(2):398-410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302023.htm
    李玉江, 陈连旺, 杨树新, 2013b.基于应变能变化的芦山强震同震效应的数值模拟.震灾防御技术, 8(4):361-369. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20130403&journal_id=zzfyjs
    李玉江, 陈连旺, 刘少峰, 杨树新, 荆燕, 2014.芦山地震的发生对周围断层影响的数值模拟.地球学报, 35(5):627-634. doi: 10.3975/cagsb.2014.05.13
    刘杰, 易桂喜, 张致伟等, 2013.2013年4月20日四川芦山M 7.0级地震介绍.地球物理学报, 56(4):1404-1407. doi: 10.6038/cjg20130434
    缪淼, 朱守彪, 2013.2013年芦山MS7.0地震产生的静态库仑应力变化及其对余震空间分布的影响.地震学报, 35(5):619-631. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201310008003.htm
    单斌, 熊熊, 郑勇, 刁法启, 2009.2008年5月12日MW7.9汶川地震导致的周边断层应力变化.中国科学 (D辑), 39(5):537-545. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200905001&dbname=CJFD&dbcode=CJFQ
    单斌, 熊熊, 郑勇等, 2013.2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系.中国科学:地球科学, 43(6):1002-1009. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm
    邵志刚, 周龙泉, 蒋长胜, 马宏生, 张浪平, 2010.2008年汶川MS 8.0地震对周边断层地震活动的影响.地球物理学报, 53(8):1784-1795. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwx201008005&dbname=CJFD&dbcode=CJFQ
    石耀霖, 曹建玲, 2008.中国大陆岩石圈等效粘滞系数的计算和讨论.地学前缘, 15(3):82-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803006.htm
    史翔, 冉勇康, 陈立春, 王虎, 刘瑞春, 2009.龙门山中央断裂北川-邓家一带古地震初步研究.第四纪研究, 29(3):494-501. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200903010.htm
    万永革, 吴忠良, 周公威等, 2000.几次复杂地震中不同破裂事件之间的"应力触发"问题.地震学报, 22(6):568-576. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200006001.htm
    万永革, 沈正康, 盛书中, 徐晓枫, 2009.2008年汶川大地震对周围断层的影响.地震学报, 31(2):128-139. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200902002.htm
    王椿镛, 楼海, 吕智勇等, 2008.青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环.中国科学 (D辑), 38(1):22-32. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801003.htm
    王辉, 刘杰, 石耀霖, 张怀, 张国民, 2008.鲜水河断裂带强震相互作用的动力学模拟研究.中国科学 (D辑), 38(7):808-818. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200807003.htm
    王敏中, 王炜, 武际可, 2011.弹性力学教程.北京:北京大学出版社.
    吴建平, 明跃红, 王椿镛, 2006.川滇地区速度结构的区域地震波形反演研究.地球物理学报, 49(5):1369-1376. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200605015.htm
    徐晶, 邵志刚, 马宏生, 张浪平, 2013.鲜水河断裂带库仑应力演化与强震间关系.地球物理学报, 56(4):1146-1158. doi: 10.6038/cjg20130410
    徐锡伟, 闻学泽, 叶建青等, 2008.汶川MS 8.0地震地表破裂带及其发震构造.地震地质, 30(3):597-629. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzdz200803003&dbname=CJFD&dbcode=CJFQ
    徐锡伟, 陈桂华, 于贵华等, 2013a.芦山地震发震构造及其与汶川地震关系讨论.地学前缘, 20(3):11-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303002.htm
    徐锡伟, 闻学泽, 韩竹军等, 2013b.四川芦山7.0级强震:一次典型的盲逆断层型地震.科学通报, 58(20):1887-1893. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320002.htm
    许冲, 徐锡伟, 2014.2013年芦山地震滑坡空间分布样式对盲逆断层构造的反映.科学通报, 59(11):979-986. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201411005.htm
    杨强, 党亚民, 2010.利用GPS速度场估算青藏高原地壳韧性层等效粘滞系数分布的研究.测绘学报, 39(5):497-502. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005012.htm
    杨兴悦, 陈连旺, 杨立明, 李玉江, 谭佩, 2013.巴颜喀拉块体强震动力学过程数值模拟.地震学报, 35(3):304-314. http://cdmd.cnki.com.cn/Article/CDMD-85403-1013107357.htm
    张培震, 徐锡伟, 闻学泽等, 2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报, 51(4):1066-1073. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804017.htm
    周光泉, 刘孝敏, 1996.粘弹性理论.合肥:中国科学技术大学出版社.
    Freed A. M., 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33:335-367. doi: 10.1146/annurev.earth.33.092203.122505
    Harris R. A., 1998. Introduction to special section:Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research, 103(B10):24347-24358. doi: 10.1029/98JB01576
    Jia K., Zhou S. Y., Zhuang J. C., et al., 2014. Possibility of the independence between the 2013 Lushan earthquake and the 2008 Wenchuan earthquake on Longmen Shan fault, Sichuan, China. Seismological Research Letters, 85(1):60-67. doi: 10.1785/0220130115
    Liu M., Luo G., Wang H., 2014. The 2013 Lushan earthquake in China tests hazard assessments. Seismological Research Letters, 85(1):40-43. doi: 10.1785/0220130117
    Luo G., Liu M., 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics, 491:127-140. doi: 10.1016/j.tecto.2009.12.019
    Parsons T., Ji C., Kirby E., 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203):509-510. doi: 10.1038/nature07177
    Ran K. Y., Chen W. S., Xu X. W., et al., 2013. Paleoseismic events and recurrence interval along the Beichuan-Yingxiu fault of Longmenshan fault zone, Yingxiu, Sichuan, China. Tectonophysics, 584:81-90. doi: 10.1016/j.tecto.2012.07.013
    Toda S., Lin J., Meghraousi M., et al. 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35(17). https://darchive.mblwhoilibrary.org/bitstream/handle/1912/3372/2008GL034903.pdf;sequence=1
    Wang Y. Z., Wang F., Wang M., et al., 2014. Coulomb stress change and evolution induced by the 2008 Wenchuan earthquake and its delayed triggering of the 2013 MW6.6 Lushan earthquake. Seismological Research Letters, 85(1):52-59. doi: 10.1785/0220130111
    Wells D. L., Coppersmith K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4):974-1002. http://www.academia.edu/1151208/New_Empirical_Relationships_among_Magnitude_Rupture_Length_Rupture_Width_Rupture_Area_and_Surface_Displacement
  • 期刊类型引用(7)

    1. 高鹏飞,苏振宇. 高原山地城市安全韧性家园构筑——云南省防震减灾避难场所规划策略优化研究. 上海国土资源. 2023(03): 6-11+60 . 百度学术
    2. 焦柳丹,唐莲,霍小森,张羽. 基于投影寻踪的城市内涝灾害韧性评估研究. 重庆交通大学学报(自然科学版). 2023(11): 72-79 . 百度学术
    3. 项寅. 社会环境视角下应急物资政企联合配置模型. 运筹与管理. 2023(10): 69-75 . 百度学术
    4. 项寅. 考虑社会环境及需求特征的应急物资储备模型. 管理工程学报. 2022(06): 94-105 . 百度学术
    5. 李江龙,樊燕燕. 基于压力-状态-响应模型框架的城市地震综合易损性评价. 中国地质灾害与防治学报. 2021(02): 117-125 . 百度学术
    6. 成蕾,李碧雄. 基于指标法的建筑物理脆弱性评估研究进展. 震灾防御技术. 2020(02): 260-273 . 本站查看
    7. 陈少华,张丽,左洪振,王满,姚爽. 2018年湖南省农村自然灾害社会脆弱性测度. 气象与减灾研究. 2020(04): 299-306 . 百度学术

    其他类型引用(9)

  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  46
  • PDF下载量:  18
  • 被引次数: 16
出版历程
  • 收稿日期:  2016-04-25
  • 刊出日期:  2017-03-01

目录

/

返回文章
返回